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Preface

This book contains selected and revised papers of the International Symposium on
Knowledge Discovery and Emergent Complexity in Bioinformatics (KDECB 2006),
held at the University of Ghent, Belgium, May 10, 2006.

In February 1943, the Austrian physicist Erwin Schrodinger, one of the founding
fathers of quantum mechanics, gave a series of lectures at Trinity College in Dublin
titled “What Is Life? The Physical Aspect of the Living Cell and Mind.” In these lec-
tures Schrodinger stressed the fundamental differences encountered between observing
animate and inanimate matter, and advanced some, at the time, audacious hypotheses
about the nature and molecular structure of genes, some ten years before the discoveries
of Watson and Crick. Indeed, the rules of living matter, from the molecular level to the
level of supraorganic flocking behavior, seem to violate the simple basic interactions
found between fundamental particles as electrons and protons. It is as if the organic
molecules in the cell ‘know’ that they are alive. Despite all external stochastic fluctua-
tions and chaos, process and additive noise, this machinery has been ticking for at least
3.8 billion years. Yet, we may safely assume that the laws that govern physics also steer
these complex associations of synchronous and seemingly intentional dynamics in the
cell. Contrary to the few simple laws that govern the interactions between the few really
elementary particles, there are at least tens of thousands of different genes and proteins,
with millions of possible interactions, and each of these interactions obeys its own pe-
culiarities. There are different processes involved such as transcription, translation and
subsequent folding. How can we ever understand the fundamentals of these complex
interactions that emerge from the few empirical observations we are able to make?

The KDECB 2006 Workshop was a great success and provided a forum for the pre-
sentation of new ideas and results bearing on the conception of knowledge discovery
and emergent complexity in bioinformatics. This event was organized in connection
with the 15th Belgium-Netherlands Conference on Machine Learning, held in Ghent,
Belgium. The goal of this workshop and this associated book is to increase awareness
and interest in knowledge discovery and emergent complexity research in bioinformat-
ics, and to encourage collaboration between machine learning experts, computational
biology experts, mathematicians and physicists, so as to give a representative overview
of the current state of affairs in this area. Next to a strong program with lectures by
leading scientists in this multidisciplinary field, the book contains contributions on
how knowledge can be extracted from sophisticated biological systems. Different disci-
plines, both ‘wet’ and ‘dry,” have contributed to these developments and they will also
benefit directly or indirectly from new, intelligent, computational techniques.

Hence, we welcomed scientists and practitioners from several European countries
and different scientific areas in Ghent for the 1st Workshop on Knowledge Discovery
and Emergent Complexity in Bioinformatics (KDECB 2006).

We hope that our readers will enjoy reading the efforts of the researchers.
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1 Introduction

In February 1943, the Austrian physicist Erwin Schrédinger, one of the founding
fathers of quantum mechanics, gave a series of lectures at the Trinity College
in Dublin, entitled “What Is Life? The Physical Aspect of the Living Cell and
Mind”. In these lectures Schrodinger stressed the fundamental differences en-
countered between observing animate and inanimate matter, and advanced some
at the time audacious hypotheses about the nature and molecular structure of
genes, some ten years before the discoveries of Watson and Crick.

Indeed, the rules of living matter, from the molecular level to the level of
supraorganic flocking behavior, seem to violate the simple basic interactions
found between fundamental particles as electrons and protons. It is as if the
organic molecules in the cell ‘know’ that they are alive. Despite all external
stochastic fluctuations and chaos, process and additive noise, this machinery is
ticking for at least 3.8 billion years. Yet, we may safely assume that the laws
that govern physics also steer these complex associations of synchronous and
seemingly intentional dynamics in the cell. Contrary to the few simple laws that
govern the interactions between the few really elementary particles, there are at
least tens of thousands of different genes and proteins, with millions of possible
interactions, and each of these interactions obeys its own peculiarities. There are
different processes involved like transcription, translation and subsequent fold-
ing. How can we ever understand the fundamentals of these complex interactions
that emerge from the few empirical observations we are able to make.

The KDECB 2006 Symposium, and this associated book, is intended to pro-
vide a forum for the presentation of new ideas and results bearing on the con-
ception of knowledge discovery and emergent complexity in bioinformatics. The
goal of this symposium is to increase awareness and interest in knowledge dis-
covery and emergent complexity research in Bioinformatics, and encourage col-
laboration between Machine Learning experts, Computational Biology experts,

K. Tuyls et al. (Eds.): KDECB 2006, LNBI 4366, pp. 1-9, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 R. Westra et al.

Mathematicians and Physicists, and give a representative overview of the current
state of affairs in this area. Next to a strong program with lectures of leading
scientists in this multi-disciplinary field, we present contributions that cover on
how knowledge can be extracted from, and complexity emerges in sophisticated
biological systems. Different disciplines, both ‘wet’ and ‘dry’, have contributed
to these developments and they will also benefit directly or indirectly from new,
intelligent, computational techniques.

In the remainder of this document the three main themes of this book are
introduced and discussed, namely, (i) Machine Learning for Bioinformatics, (ii)
Mathematical modeling of gene-protein networks, and, (iii) Nature-inspired
computation.

2 Machine Learning for Bioinformatics

During the past decades, advances in genomics have generated a wealth of bi-
ological data, increasing the discrepancy between what is observed and what is
actually known about life’s organisation at the molecular level. To gain a deeper
understanding of the processes underlying the observed data, pattern recognition
techniques play an essential role.

The notion of a pattern however, needs to be interpreted in a very broad
sense. Essentially, we could define a pattern as everything that is the opposite
of chaos. Thus the notion of organisation can be associated with a pattern. The
goal of pattern recognition techniques then is to elucidate the organisation of the
pattern, resulting in a wide range of subtasks such as recognition, description,
classification, and grouping of patterns.

In bioinformatics, techniques to learn the theory automatically from the data
(machine learning techniques) play a crucial role, as they are a first step to-
wards interpreting the large amounts of data, and extracting useful biological
knowledge from it. Machine learning techniques are generally applied for the fol-
lowing problems: classification, clustering, construction of probabilistic graphical
models, and optimisation.

In classification (sometines also referred to as supervised learning) the goal
is to divide objects into classes, based on the characteristics of the objects. The
rule that is used to assign an object to a particular class is termed the classifica-
tion function, classification model, or classifier. Many problems in bioinformatics
can be cast into a classification problem, and well established methods can then
be used to solve the task. Examples include the prediction of gene structures
[4,26,37], which often is the first step towards a more detailed analysis of the
organism, the classification of microarray data [17,21], and recently also classifi-
cation problems related to text mining in biomedical literature [23]. The compu-
tational gene prediction problem is the problem of the automatic annotation of
the location, structure, and functional class of protein-coding genes. A correct
annotation forms the basis of many subsequent modeling steps, and thus should
be done with great care. Driven by the explosion of genome data, computational
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approaches to identify genes have thus proliferated, thereby depending strongly
on machine learning techniques.

A second class of problems in bioinformatics concerns the topic of clustering,
also termed unsupervised learning, because no class information is known a pri-
ori. The goal of clustering is to find natural groups of objects (clusters) in the
data that is being modeled, where objects in one cluster should be similar to each
other, while being at the same time different from the objects in another cluster.
The most common examples of clustering in bioinformatics concern the cluster-
ing of microarray expression data [10,19,39], and the grouping of sequences, e.g.
to build phylogenetic trees [13].

Probabilistic graphical models [31] have proliferated as a useful set of tech-
niques for a wide range of problems where dependencies between variables (ob-
jects) need to be modeled. Formally, they represent multivariate joint probability
densities via a product of terms, each of which only involves a few variables. The
structure of the problem is then modeled using a graph that represents the rela-
tions between the variables, which allows to reason about the properties entailed
by the product. Common applications include the inference of genetic networks
in systems biology [38] and Bayesian methods for constructing phylogenetic trees
[34]. Other examples of applications of machine learning techniques in bioinfor-
matics include the prediction of protein structure (which can be cast into an
optimisation problem), motif identification in sequences, and the combination
of different sources of evidence for analysis of global properties of bio(chemical)
networks. In all of these domains, machine learning techniques have proven their
value, and new methods are constantly being developed [25].

3 Modeling the Interactions Between Genes and Proteins

A prerequisite for the successful reconstruction of gene-protein networks is the
way in which the dynamics of their interactions is modeled. The formal math-
ematical modeling of these interactions is an emerging field where an array of
approaches are being attempted, all with their own problems and short-comings.
The underlying physical and chemical processes involved are multifarious and
hugely complex. This condition contrasts sharply with the modeling of inanimate
Nature by physics. While in physics huge quantities of only a small amount of
basic types of elementary particles interact in a uniform and deterministic way
provided by the fundamental laws of Nature, the situation in gene-protein in-
teractions deals with tens of thousands of genes and possibly some million pro-
teins. The quantities thereby involved in the actual interactions are normally
very small, as one single protein may be able to (in)activate a specific gene, and
thereby change the global state of the system. For this reason, gene regulatory
systems are much more prone to stochastic fluctuations than the interactions in-
volved in normal inorganic reactions. Moreover, each of these interactions is dif-
ferent and involves its own peculiar geometrical and electrostatic details. There
are different processes involved like transcription, translation and subsequent
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folding. Therefore, the emergent complexity resulting from gene regulatory net-
works is much more difficult to comprehend.

In the past few decades a number of different formalisms for modeling the
interactions amongst genes and proteins have been presented. Some authors
focus on specific detailed processes such as the circadian rhythms in Drosophila
and Neurospora [16,18], or the cell cycle in Schizosaccharomyces (Fission yeast)
[30]. Others try to provide a general platform for modeling the interactions
between genes and proteins. For a thorough overview consult de Jong (2002) in
[6], Bower (2001) in [3], and others [12,14,20].

Traditionally, much emphasis lay on static models, where the relations be-
tween genes and proteins are considered fixed in time. This was in line with
the impressive developments in microarray technology that opened a window
towards reconstructing static genetic and metabolic pathways, as for instance
demonstrated in [36]. Successful static models are the Logical Boolean networks
consult [2,3,5,1], and on Bayesian Networks consult [14,40,41]. In discrete event
simulation models the detailed biochemical interactions are studied. Consider-
ing a large number of constituents, the approach aims to derive macroscopic
quantities. More information on discrete event modeling can be found in[3].

In contrast to the static networks, the aim in modeling dynamic networks is to
explain the macroscopic network complexity from the molecular dynamics and
reaction kinetics. The approach to modeling the dynamical interactions amongst
genes and proteins is by considering them as biochemical reactions, and thus
representing them as traditional ‘rate equations’. The concept of chemical rate
equations, dating back to Van 't Hoff, consists of a set of differential equations,
expressing the time derivative of the concentration of each constituent of the
reaction as some rational function of the concentrations of all the constituents
involved. In general, the syntax of the chemical reactions is mapped on the
syntax of the rate equations, as e.g. in the Michaelis-Menten equation for enzyme
kinetics. More on the physical basis of rate equations can be found in [48].

Though the truth of the underlying biochemical interactions between the con-
stituents is generally accepted, the idea of representing them by rate equations
involves a number of major problems. First of all, the rate equation is not a
fundamental law of Nature like the great conservation laws of Energy and Mo-
mentum, but a statistical average over the entire ensemble of possible micro-
scopic interactions. The applicability of the rate equation therefore relates to
the law of large numbers. In normal inorganic reactions this requirement holds.
However, in inhomogeneous mixtures or in fast reactions the actual dynamics
will depart significantly from this average. Also in case of gene-, RNA-, and
protein-interactions this condition will not hold as we will discuss later. Second,
the Maxwell velocity distribution should apply, otherwise the collision frequency
between the constituents would not be proportional to their concentrations, and
details of the velocity distribution would enter. This condition is met easily in
the presence of a solvent or an inert gas, but difficult to attain for macromole-
cules in a cytoplasm. The same holds for the distribution of the internal de-
grees of freedom of the constituents involved, such as rotational and vibrational
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energies. The distribution of their energies should have the same ‘temperature’
as in the Maxwell velocity distribution, otherwise this would affect the rate of
the collisions that result in an actual chemical reaction. Also this condition is not
easily met by gene-protein interactions. Finally, the temperature of the reaction
should be constant in space and time - this condition may be accounted for in
this context.

So, rate equations are statistical approximations that hold under above re-
quirements. Under these conditions they predict the average number of reactive
collisions. The actual observed number will fluctuate around this number, de-
pending on the details of the microscopic processes involved. In case of biochem-
ical interactions between genes and proteins at least some of the conditions will
be violated and therefore the applicability of the concept of rate equations is
valid only for genes with sufficient high transcription rates. This is confirmed by
recent experimental findings by Swain and Elowitz [11], [35], [42], [43].

Dynamic gene-protein networks can lead to mathematical complexities in
modeling and identification [27,28,8]. To overcome these problems, some authors
have proposed to model them as piecewise linear models, as introduced by Glass
and Kauffman [15]. Such models can be demonstrated to be memory-bounded
Turing-machines [2]. de Jong et al. [6,7] have proposed qualitative piecewise lin-
ear models rather than a quantitative models, because the correct underlying
multifarious mathematical expressions are not tractable. In spite of the intuitive
attractiveness of this idea, there are a number of conceptual and practical prob-
lems in applying these techniques in practical situations. In biology piecewise
linear behaviour is frequently observed, as for instance in embryonic growth
where the organism develops by transitions through a number of well-defined
‘check points’. Within each such checkpoint the system is in relative equilib-
rium. However, it should be mentioned that there is an ongoing debate on the
modeling of gene-protein dynamics as checkpoint mechanisms versus limit-cycle
oscillators, see [33,44].

Others have employed specific characteristics of the networks to construct
a viable reconstruction algorithm, such as the sparsity and hierarchy in the
network interactions [8,49,32].

4 Nature-Inspired Computing

In the sections above, we gave an overview of approaches and techniques from
computer science and mathematics that are promising in order to model biolog-
ical phenomena such as gene networks, protein structure, etc. We can however
go one step further, and try to model the emergent collective intelligence, aris-
ing in nature from local, simple interactions between simple units, which can be
biological cells, neurons as well as insects as ants and bees. Using insights from
how this complexity and global intelligence emerges in nature, we can develop
new computational algorithms to solve hard problems. Well known examples
are Neural Networks and Genetic Algorithms. Whereas Neural Networks are in-
spired on the working of the brain, Genetic Algorithms are based on the model of
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natural evolution. Another natured inspired technique is reinforcement learning.
Reinforcement learning [22,45] finds its roots in animal learning. It is well known
that, by operand or instrumental conditioning, we can teach an animal to re-
spond in some desired way. The learning is done by rewarding and punishing the
learner appropriately, and as a result the likelihood of the desired behaviour is
increased during the learning process, whereas undesired behaviour will become
less likely.

The objective of a reinforcement learner is to discover a policy, meaning a
mapping from situations to actions, so as to maximise the reinforcement it re-
ceives. The reinforcement is a scalar value which is usually negative to express
a punishment, and positive to indicate a reward. Unlike supervised learning
techniques, reinforcement learning methods do not assume the presence of a
teacher who is able to judge the action taken in a particular situation. Instead
the learner finds out what the best actions are by trying them out and by eval-
uating the consequences of the actions by itself. For many problems, such as
planning problems, the consequences of the action are not immediately appar-
ent after performing the action, but only after a number of other actions have
been taken. In other words the selected action may not only affect the immediate
reward/punishment the learner receives, but also the reinforcement it might get
in subsequent situations, i.e. the delayed rewards or punishments. Reinforcement
learning techniques such as Q-learning and Adaptive Critique techniques, can
deal with this credit assignment problem and are guaranteed to converge to an
optimal policy, as long as some conditions, such as the environment experienced
by the learner should be Markovian and the learner should be allowed sufficient
exploration, are met.

More recently other nature inspired techniques such as Ant Colony Optimi-
sation (ACO) [9] received a lot of attention. ACO techniques are inspired by
the behaviour of ants. It is well known that one single ant on its own cannot do
anything useful, but a colony of ants is capable of performing complex behav-
iour. The complex behaviour emerges due to the fact that ants can communicate
indirectly with each other, by laying a pheromone trail in the environment. This
pheromone signal can be observed by other ants, and this will influence their
own behaviour. The more pheromone is sensed by an ant in some direction, the
more it will be attracted in that direction, and the more the pheromone will
be reinforced. ACO algorithms have been successfully applied to complex graph
problems such as large instances of the travelling salesman problem. ACO tech-
niques are closely related to the Reinforcement Learning technique mentioned
in the previous paragraph, however they do not come with straightforward con-
vergence proofs. As is illustrated in [46] by Verbeeck et al. it is possible to
provide a clean proof of convergence by expressing the mapping between the
ACO pheromone updating mechanism and interconnecting learning automata
[29]. The insight into the convergence issues of these algorithms is crucial in
order to have a wider acceptance of these techniques.

Recent investigations [24,47] have also opened up the possibility of apply-
ing recruitment and navigational techniques from honeybees to computational
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problems as for instance foraging. Honeybees use a strategy named Path Inte-
gration. By employing this strategy, bees always know a direct path towards
their destination and their home. Bees employ a direct recruitment strategy by
dancing in the nest. Their dance communicates distance and direction towards
a destination. Ants, on the other hand, employ an indirect recruitment strategy
by accumulating pheromone trails. When a trail is strong enough, other ants are
attracted to it and will follow this trail towards a destination. Both strategies
provide the insects with an efficient way of foraging.
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