THE C PRIMER

,f'}

The C Primer

Les Hancock

Morris Krieger

McGraw-Hill Book Company

New York St.Louis SanFrancisco Auckland
Bogota Hamburg Johannesburg London
Madrid Mexico Montreal New Delhi

Panama Paris Sao Paulo Singapore
Sydney Tokyo Toronto

Library of Congress Cataloging in Publication Data

Hancock, Les.
The C primer.

1. C (Computer program language) I. Krieger, Morris,
date. II. Title.
QA76.73.CISH36 1983 001.64°24 82-22897
ISBN 0-07-025981-X

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by
any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher.

1234567890 KGP/KGP 898765432

ISBN 0-07-025981-X

This book was set in Times Roman and Monospace by the authors,
using a Graphic Systems Phototypesetter driven by
a PDP-11/45 running under the UNIX operating system.

Printed and bound by The Kingsport Press.

Introduction

A primer is a book for beginners. This primer is intended for those
programmers who, while they may know something about program-
ming, know nothing whatever about the C language; and the amount of
programming knowledge we do assume our readers have is minimal.
We assume they have access to a computer that runs C, and that they
know enough about programming to create source code files using a
system editor and then compile and run those files.

We don’t pretend this primer contains a complete description of
the C language. The appendix lists the features of C we don’t describe.
Nor will we be discussing any topic that requires a deep knowledge of
systems programming, which happens to be the kind of programming C
is particularly intended for. The discussion of such concepts would cer-
tainly have made the book a hard chew for our intended readers. More
importantly, it would have obscured the clean, stripped-to-essentials
outline of C a beginner needs and should have.

Perhaps our most important omission is that we say nothing about
file handling. Most programs, whatever language they’re written in,
read data from files and write data to files. As almost everyone knows,
C was meant to run under the UNIX® operating system, which has an
excellent set of file-handling facilities. But we say nothing about UNIX
or any of the other operating systems on which C may now be run.
Therefore, as you make your way through our primer, or after you’ve
finished it, you will have to consult the user’s manual that is supplied
with your operating system and follow the procedures described there
to discover how to read from and write to files on your machine.

®Bell Telephone Laboratories

vii

viii THE C PRIMER

While C is a clean, straightforward language, and this is particu-
larly so at the beginner’s level at which this primer is written, there are
two things about C that a beginner with some knowledge of another
high-level language may find bothersome. One has to do with C’s
relaxed attitude toward data typing; that is, the when, where, and how
of declaring variables. In contrast to Pascal, for example, which insists
that variables be declared before they can be used, and always used as
declared, C does not invariably insist that variables be declared in
advance. Instead, C has a system of automatic defaults. If a program-
mer neglects to declare a variable before using it, at its first use in a
program C will assume the programmer meant the variable to be of
whatever type seems to be sensible to the compiler under the cir-
cumstances. These default assumptions may not be what the program-
mer intended, and the result will be a great gnashing of teeth. To
avoid confusion, the beginner needn’t take advantage of C’s relaxed
attitude toward data typing if he doesn’t want to. In fact, it would be
better for him not to do so. Instead, he should explicitly declare all his
variables.

Another source of potential difficulty for the beginner has to do
with C’s pointer notation. Pointers work by indirection, which is
inherently a source of confusion. Experienced assembly language pro-
grammers will readily grasp what C pointers are and what they are
meant to do. Others may not. The simplest solution for those who are
not familiar with pointers and find them confusing is simply not to use
them. In this case, their C programs will look and run much like the
programs they might have written in one of the other structured
languages. Hopefully, they will in time discover how useful C pointers
can be.

During the planning of this primer, it became apparent to us that
a set of exercises would be extremely useful to a beginner, but we put
off preparing them. After we had completed the text, we discovered
that someone had already written the exercises we had in mind. The
exercises are published in the form of a series of puzzles under the
title, The C Puzzle Book, by Alan R. Feuer.* We strongly urge our
readers to obtain a copy of Feuer’s book and work the appropriate puz-
zles as they complete the chapters in our primer. The fit between the
two books is not perfect, but it is very good. In addition, Feuer
touches on aspects of C we thought too advanced for a primer (e.g.,
casts, bitwise operators), but our readers should not find these topics
difficult to understand.

Having completed this primer (and Feuer’s puzzles), what can the
* Feuer, Alan R., The C Puzzle Book. Prentice-Hall, 1982.

INTRODUCTION ix

interested beginner do next to consolidate and extend his knowledge of
the C language? The answer is obvious:- read The C Programming
Language, by Kernighan and Ritchie.* Indeed, one of the objects of this
primer is to bring the beginner up to the level where he can get more
out of their book than he might otherwise for, truth to tell, The C Pro-
gramming Language is not a book for beginning C programmers. It was
in fact written to introduce C to experienced systems programmers for
whom the underlying language and programming concepts were largely
self-evident. The graceful clarity with which the book is written has in
a sense proven deceptive, for it has made many beginners believe they
could get through the book without too much trouble. Alas, they have
instead found themselves hopelessly bogged down somewhere in
Chapter 3. A warning to beginners is therefore still in order. Having
completed this primer, they should find The C Programming Language
much more accessible, but if they are unfamiliar with systems program-
ming concepts there will still be much in Kernighan and Ritchie they
will find difficult.

Another thing a beginner might do to learn what the program-
ming art is all about is try working his way through the programs con-
tained in Software Tools, by Kernighan and Plauger,t one of the best
expositions on the art that has ever been written. We would recom-
mend the original version of Software Tools, where the programs are
written in Ratfor, for Ratfor and C are quite similar.

And, of course, the beginner should start writing his own pro-
grams in C as soon as possible. It is the only way to really learn the
language.

Acknowledgements

First, we want to thank Ed Yourdon for allowing us to use the comput-
ing facilities of Yourdon, Inc. for the preparation of the text. This
entire book was written and the final version typeset using Yourdon’s
PDP-11/45 and photocomposition equipment, all running under UNIX.
We want also to thank the staff and computer operators at Yourdon,
Inc. for their expert help and advice.

All or part of a draft of this book was read by Chris Terry, Mark
Pearson, Thuy Nguyen, Tom Gibson, and Arden Phillips. We want to
express our appreciation to them for the trouble they’ve taken. We are
of course responsible for the contents of this book as it now exists.

* Kernighan, Brian W. and Dennis M. Ritchie, The C Programming Language. Prentice-
Hall, 1978.

t Kernighan, Brian W. and P.J. Plauger, Sofiware Tools. Addison-Wesley, 1976.

Table of Contents

INtrOAUCHION. .. oot vii
Chapter 1: What C Is......ccoooviiieeeeee e 1
WHhat C ISN ..o 5
Compiling C PTrOgramsooviveimmmiiiiiiiiieeeieeeeeeeeeeeeeeeveeensaaanes 6
Chapter 2: HOW € LOOKS......oiieeeiiiiieeiieeeeee et 12
How This Program WOTKSccoouuiiiiieiiieeiieee e 13
C FUNCHONS .. 14
Function Definitionsooeeiiiiiiiiiiiiieieieee e 14
Names, Names, NAMESccoovvuiiiiiiieiiiiieeeeeeee e 19
More on COMPILINGocoovviiiiiiiiiiiiieeccc e 22
Chapter 3: Primary Data TYPESuueviiiiiiiiiieeeeciiieeeeeeee e 28
| § 1< 4<) SRS 29
(01 T:1 - 101 1<) £ ORI 31
ESCaAPE SEQUENCES .. .oovniiiiiiiiiieeciee e 32
Floatifg POINT :uosmmsnmsssimonossinnso s 55550 s sesssassons s i sbommmmibtainmmmesnmnns 33
Double PreCiSionoeeiiiiiieeeeeeeeee ettt e s 35
Initializing Variablescccooiiiiiiiiiiicecceeeee e 35
Chapter 4: Storage ClaSSESuueeeeeeeeeeeeeiie e 37
Automatic Variablesooouviiiiiiiiii e 38
Register Variables...........cooeeiiiiiiiiiiiiii e 45
Static Variablescooviiieieiiiiee e 47
External Variables.........cooouviiiuniiiiiiiiieeee e 50
Chapter 5: OPEratorScoovvuuiieiiiieee ettt e e e e 56

iv. THE C PRIMER

Arithmetic and Assignment OpPeratorsc.uuueeeeeeeeeennneeeeennnnnn. 56
The Modulus OPETatorcceievviiieeeeeeiiiieeeeeeeiee e e e eeeei e e ereeaaa e 61
Mixed Operands and Type CONnversioncccceeeeeveeieeeninereeennnnnnn. 62
Increment and Decrement Operatorscoevvvveeeeiviieeeiineeenneenennn. 65
Chapter 6: Control Structures L........ccooovviiiiiiieiiiiiiiiieeecee e, 67
Conditional Execution in C Using the 1 f......cccccooeviiiiiiiiiieeennnnnnnn. 67
Looping in C Using the while.....ooooooiiiieeiiiiiiiiiieeiiiieeee e 76
Chapter T: FUNCLIONS vsiss0s0ismssssassummussssve s sssmsssvassssisns s 6 43 ssvsssivassanss 86
Arguments and Returned Valuescccoeeeiiiiiiiiiiiiiiiineeciiieeeeenn, 93
Arguments and Black BOX€S...........uoeeiiiiiiiiiiieiiiee e 96
More 0n Data TYPES.....ccuueeiiiiiiiiieee e 97
Chapter 8: The C PreproCeSSOToivuunieieieeeeiie et et e e eeeianes 102
Simple String Replacement.............coooviviiiiiiiiiiiiieeiieeciieee e, 104
Macros with ATZUMENTSooiivieiiiieiiie e 107
File INCIUSIONcovvniiiiiiiieeeeeeee e 113°
Chapter 9: ATTAYS ..ooeeiiiieeeeiiieee e e et e e e e e e e e e eeeaaes 115
Array DefinitionsS........oovviieiiiiiiiiiiieieeeee e 115
ATTAY NOLALION. ..ottt e 118
Internal Representation of Arrayscoooooveeiiieiiiiineiiiieeeiieeeennnn. 120
Multidimensional ATTAYSc..oeivueiiieiiieiiieeee e 122
STEINE, ATTAVS: 0 s sssssvasus sssesssss oo s e s753o 0058 w55 i 5675 0 5voss Aoaoss ios 124
Chapter 10: POINTErS.ooiiiiiiiie e 127
Pointer OPerationS........cccovvuiiiiiiieiiiieeiiiie e e e eaans 128
Pointer Declarationsceeeiiiiiiiiieeieieiiieee e 130
Pointers as Function ArgUmEntsccccoovuiiiiieiiiineiiiieeeiieeeeennn. 133
Passing Arguments as POINtErS.......ooooiiviueeeiiiiiieeeeeeeee e 137
Pointers and ATTAYSouueiiiiiiiieeeee e 139
Manipulating Array Elements...........coooviieeiiiiiiiiieeeciiiiiceeeeeeeinnn 144
Notes on a Few Fine Pointscooooviiiiiiiiiiiiieiiiecieeeee e 149
Chapter 11: Control Structures IL...........cooooiiiiiiiiiiiiiiiiiiiiiieeeeeeenen. 151
Looping in C Using the do-whileccooiiieiiiiiieciiineciiieeciinnnnns 152
Looping in C USINg the 0. oo 155
The Comma OPErator......cocuuiiiiieiiiiee et e e e e eeeen 160
Conditional Execution in C Using the switch.........ooooeeiiiinnnnn... 164
A Note on the while and do-whilecooooiiiiiiiiiiieeiiiieeennnnn., 173
Chapter 12: StrUCTUTESuuiiiiiiiieee e 175
StrRCture: DECIATALIONS « i voss oo sossossssssmnss s s 5 555085466550 505555 0ns 55 bimeni e 176

Variables of Type struct...cooveeiiiiiiiiis e 176

TABLE OF CONTENTS v

The Assignment of Values to Structure Variables................cco.. 180
Structure Variables and ATTAyS........ccouiierieiiieiiiniiiiiiiecenneceieeenen, 180
Structure Variables and Pointerscoooeiiiiiiiiiiiiiiiiiiiii, 182
Chapter 13: Input/Output and Library Functionsc..couuvuvennnnen. 188
Terminal I/0 ROULINEScooooiviiiiiiiiiiiiiiiiiiieeeie e e eeeeeeees 190
getchar and pubtchar :.: asmsewsm s umosmammammsssssmms 190
gets and PULS...oocciiiiiiiiiii 193
printf and SCAnE ..o 197
String-Handling FunctionsS...........c.oovviiiieiiiieiiiiceccei e 212
ISR ob ol o - A OPUOPPR PRI 212

SR ob o) 11) < JUNR OO UU U PP PUPOPURRUPRPPRRP 213

S X C DY . o5 s s s s 30 33RO R S BR300 S5 S SRR RS S s 214

ISR o ol =5 o W PO SRR PR 215
Converting Characters to INtegers........ccoeeveeevivviieeeeeeiiiiieeeeeeeeiaenn. 216
Appendix: A Budget of OmiSSions..........ccoeeiiiiiiiiieieiiiiiiiiee e 219

Chapter 1
What C Is

C is a programming language developed at Bell Laboratories around
1972. It was designed and written by one man, Dennis Ritchie, who
was then working closely with Ken Thompson on the UNIX operating
system. UNIX was conceived as a sort of workshop full of tools for the
software engineer, and C turned out to be the most basic tool of all.
Nearly every software tool supplied with UNIX, including the operating
system and the C compiler, is now written in C.

In the mid-1970s UNIX spread throughout Bell Labs. It was
widely licensed to universities. Without any fuss, C began to replace
the more familiar languages available on UNIX. No one pushed C. It
wasn’t made the ‘‘official’” Bell Labs language. Seemingly self-
propelled, without any advertisement, C’s reputation spread and its
pool of users grew. Ritchie seems to have been rather surprised that so
many programmers preferred C to old standbys like Fortran or PL/I, or
to new favorites like Pascal and APL. But that’s what happened. By
1980 several C compilers were available from independent vendors, and
C was running on various non-UNIX systems.

It’s entirely in character for C to make such a modest debut. It
belongs to a well-established family of languages whose tradition
stresses low-key virtues: reliability, regularity, simplicity, ease of use.
The members of this family are often called ‘‘structured’ languages,
since they’re well suited to structured programming, a discipline intended
to make programs easier to read and write. Structured programming
became something of an ideology in the 1970s, and other languages
hew to the party line more closely than C. The prize for purity is often
given to Pascal, C’s pretty sister. C wasn’t meant to win prizes; it was

1

2 THE C PRIMER

meant to be friendly, capable, and reliable. Homely virtues these, but
quite a few programmers who begin by falling in love with Pascal end
up happily married to C.

C’s direct ancestry is easy to trace. This is the line of descent:

Algol 60
Designed by an international committee, 1960

l

CPL
(Combined Programming Language)
Cambridge and the University of London, 1963

l

BCPL
(Basic Combined Programming Language)
Martin Richards, Cambridge, 1967

l

B
Ken Thompson, Bell Labs, 1970

|

C
Dennis Ritchie, Bell Labs, 1972

Though Algol appeared only a few years after Fortran, it’s a much
more sophisticated language, and for that reason has had enormous
influence on programming language design. Its authors paid a great
deal of attention to regularity of syntax, modular structure, and other
features we tend to think of as ‘“‘modern.”” Unfortunately, Algol never
really caught on in the United States, probably because it seemed too
abstract, too general. CPL was an attempt to bring Algol down to
earth—in its inventors’ words, to ‘‘retain contact . . . with the realities
of an actual computer’’*—a goal shared by C. Like Algol, CPL was
big, with a host of features which did little to enhance its power but did
make it hard to learn and difficult to implement. BCPL aimed to solve
the problem by boiling CPL down to its basic good features. B, written
by Ken Thompson for an early implementation of UNIX, is a further

* Barron, D.W., Buxton, J.N., Hartley, D.F., Nixon, E., Strachey, C., ‘‘The Main
Features of CPL." Computer Journal, Vol. 6, 1963, p. 134.

WHATCIS 3

simplification of CPL—and a very spare language it is indeed, though
well suited for use on the hardware then available. But both BCPL and
B carried economy of means so far that they became rather limited
languages, useful only when dealing with certain kinds of problems.
Ritchie’s achievement in C was to restore some of this lost generality,
mainly by the cunning use of data types. He managed to do this
without sacrificing the simplicity or ‘‘computer contact’ that were the
design goals of CPL.

Like BCPL and B, C has the coherence that’s often associated
with one-man languages, other well-known examples being Lisp, Pas-
cal, and APL. (Counterexamples include such many-headed monsters
as PL/I, Algol 68, and Ada.) Following in his predecessors’ small-but-
beautiful footsteps, Ritchie was able to avoid the catastrophic complex-
ity of languages that try to be all things to all men. Yet his minimalist
approach didn’t rob C of its power. By following a few simple, regular
rules, C’s limited stock of parts can be put together to make more com-
plex parts, which can in turn be put together to form even more
elaborate constructions. By way of comparison, think of the complex
organic molecules that can be assembled from a dozen different atoms,
or the symphonies that have been composed from the twelve notes of
the chromatic scale. Simple building blocks (atoms and notes) are put
together according to simple rules (of valency and harmony) to build
more elaborate parts (radicals, chords) which are in turn used to create
complex organisms and music of great beauty.

This ability to build complex programs out of simple elements is
C’s great strength. If C had a coat of arms, its motto might be multum
in parvo: a lot from a little.

Languages written by one man usually reflect their author’s field
of expertise. Dennis Ritchie’s field is systems software —computer
languages, operating systems, program generators, text processors,
etc.—and C is at its best when used to implement tools of this kind.
Even though there’s a good deal of generality built into C, let’s be
clear: it’s not the language of choice for every application. You can, if
you want, use C for writing everything from accounts receivable pro-
grams to video games: in principle, almost any computer language can
do, one way or another, what any other language can do. And it is true
that programs written in C run fast and take little storage space. But
while an analysis of variance written in C may run faster than one writ-
ten in APL, the APL program will be up and running first.

So C’s special domain is systems software. Why is it so well
suited to that field? Two reasons. First, it’s a relatively low-level
language that lets you specify every detail in a program’s logic to

4 THE C PRIMER

achieve maximum computer efficiency. Second, it’s a relatively high-
level language that hides the details of the computer’s architecture,
thus promoting programming efficiency. The key to this paradox is the
word relative. Relative to what? Or, to put it another way, what is C’s
place in the world of programming languages?

We can answer that question by referring to this hierarchy:

True dialogue

Artificial intelligence ‘‘dialogues”
Command languages (as in operating systems)
Problem-oriented languages
Machine-oriented languages
Assembly languages

Hardware

Reading from bottom to top, these categories go from the concrete to
the abstract, from the highly detailed to the very general, from
machine-oriented to human-oriented, and, more or less, from the past
toward the future. The dots represent big leaps, with many steps left
out. Early ancestors of the computer, like the Jacquard loom (1805) or
Charles Babbage’s ‘‘analytical engine’” (1834), were programmed in
hardware, and the day may come when we program a machine by hav-
ing a chat with it, a la HAL 9000—but that certainly won’t happen by
the year 2001.

Assembly languages, which provide a fairly painless way for us to
work directly with a computer’s built-in instruction set, go back to the
first days of electronic computers. Since they force you to think in
terms of the hardware and to specify every operation in the machine’s
terms—move these bits into this register and add them to the bits in
that other register, then place the result in memory at this location, and
so on—they’re very tedious to use, and errors are common. The early
high-level languages, like Fortran and Algol, were created as alterna-
tives to assembly languages. They were much more general, more
abstract, allowing programmers to think in terms of the problem at
hand rather than in terms of the computer’s hardware. Logical struc-

WHATCIS 5

ture could be visibly imposed on the program. It’s the difference
between writing a = b + ¢ and writing

LHLD .c
PUSHH
POP B
LHLD .b
DAD B
SHLD .a

which is about the quickest way to say the same thing in the assembly
language of the 8080 computer chip.

But the early software designers may have jumped too far up our
hierarchy of categories. Algol and Fortran are too abstract for
systems-level work; they’re problem-oriented languages, the sort we use
for solving problems in engineering or science or business. Program-
mers who wanted to write systems software still had to rely on their
machine’s assembler. After a few years of this drudgery some systems
people took a step back, or, in terms of our hierarchy, a step down, and
created the category of machine-oriented languages. As we saw when we
traced C’s genealogy, BCPL and B belong to this class of very-low-level
software tools. Such languages are excellent for down-on-the-machine
programming, but not much use for anything else—they’re just too
closely wedded to the computer. C is a step above them, and a step
below most problem-solving languages, which is what we mean by say-
ing that it’s both high- and low-level. It fits into a very cozy niche in
the hierarchy, one that somehow feels just right to many software
engineers. It’s close enough to the computer to give the programmer
great control over the details of his program’s implementation, yet far
enough away that it can ignore the details of the hardware.

What C Isn't

To begin with, it isn’t a language. We call it a language because every-
one else does, but the analogy between human speech and program-
ming isn’t very apt. C or any other ‘‘programming language’’ is a set
of symbols whose possible combinations are precisely defined and
which can be used to represent and transform numerically coded
values. If that makes C a language then musical notation is a language
too, and so is algebra. We know this metaphor has great poetic
appeal—math is ‘‘the language of science,’”” music is ‘‘the universal
language’ —and we shall speak of ‘“‘the C language’ throughout this

6 THE C PRIMER

book, but understand that we’re taking poetic license. Fanciful anal-
ogies have a way of hardening into laws of nature.

C isn’t a branch of mathematics either, though a C program will
often look like something out of an algebra text. Some new program-
mers stay away from C because it looks like math to them, but that’s a
nonproblem. You can use C to the full without knowing anything more
arcane than a = (b + 1) / c. Because C is a relatively low-level
language it knows no higher math. It stays close to the computer,
which can handle only very simple arithmetic.

C isn’t a religion. Some programming languages are, complete
with a priesthood and a flock of disciples. So far C has escaped this
kind of silliness, probably because it was designed as a tool for use by
professionals who understand that no tool can be perfect.

C isn’t perfect. Everyone who works with a tool swears at it
sometimes, and you’ll find specific criticisms of C scattered throughout
this book. We can sum them up in advance by saying that C trades
some elegance and some safety features for speed and ease of use.
Once you’re familiar with the language you’ll probably prefer it that
way. Since you’re not familiar with it yet, we’ll help you through the
tricky parts.

Compiling C Programs

If this introduction has done its job, you should be. convinced by now
that the C language is easily accessible to human beings. Unfor-
tunately, it’s not accessible to computers, not directly: a computer can
only execute the instructions built into it, instructions that program-
mers have to deal with at the assembly-language level. To put C into
practice we need a program that translates C-language instructions into
their machine-level equivalents. Such programs are called compilers.

In order to make use of any compiler it is first necessary to write
a program in the compiler’s language. When we write a program in C,
we’re writing what is called source code. The compiler’s job is to take
our source code and translate it into instructions that our computer can
understand and execute. The compiler’s output is called executable
code. In other words, it’s our program in a form that can be directly
executed by our computer. Different makes of computers require dif-
ferent versions of the C compiler, since each has its own machine
language. The source code always remains the same, but the execut-
able code will change for each computer our program runs on.

The source code passes through a number of intermediate stages
before it turns into executable code. We will assume the simplest pos-

WHATCIS 7

sible case: a small program that is complete in itself. The scenario usu-
ally goes like this. A programmer logs onto his computer and, using
the system editor, writes a program, which he saves as a named file.
This is called the source code file. He then sets the compilation process
in motion by typing some command—in UNIX it’s cc. This action
triggers a whole cascade of translation programs, each of which takes
the user’s code, translates it into a lower-level form, and passes that
version along to the next translator. Here’s how we might represent
the cascade graphically:

Write program: Editor

!

C source code

l

Compile program: C preprocessor

expanded C
source code

l

C compiler

|
assembly-language
code

!

Assembler

!

object code
JSfrom this program and
library files

!

Linker

l

executable code

!

Run program: Loader

The C preprocessor expands certain shorthand forms in the source code,
as described in Chapter 8. Its output, the expanded source code, is fed
to the C compiler proper. What comes out of the compiler is the origi-

8 THE C PRIMER

nal program translated into the computer’s native assembly language.
This new file is passed along to the system’s assembler, which is a pro-
gram that translates it into a form called relocatable object code. Object
code is an intermediate form; it can’t be read by the programmer and it
can’t be run by the computer. So why bother with it? Because all C
programs must be linked with support routines from the C run-time
library, which is described in Chapter 13. The linker performs that
chore, linking all the necessary code together and translating it into an
executable code file. The programmer can run that code by giving it to
the system’s loader, something that’s done in UNIX simply by typing
the file’s name.

It’s a pretty long way, then, from writing a program to running it.
Luckily, we don’t really have to think much about the steps involved,
certainly not if we’re beginners. The compilation process is hidden
away, at least in UNIX. We merely type cc and wait a few seconds,
wondering why this supposedly fast machine is so slow. At the end of
those seconds we’re presented with a runnable program which may or
may not run the way we think it should. If it doesn’t, we try to find
the problem in the source code, use the editor to change it, and then
compile it all over again. This happens often.

Let’s run through an example. But before we do, we as authors
must face up to a problem that all books on programming languages
encounter. In our examples, what kind of system should we assume
our readers have? The easiest way out, and the most natural, is to
assume that they have exactly the same system we used to write our
examples on: a PDP-11/45 running under Version 6 of UNIX.
Throughout this book we shall refer to this system as our ‘‘reference
computer,”’ and to the UNIX/6 version of C as our ‘‘reference com-
piler.”” If you have access to another version of UNIX, whether Version
7 or System 3, you will find only minor differences between the exam-
ples in this book and those run on your computer. If you’re using a
non-UNIX version of C, there may be important differences; you
should refer to your user’s manual for details.

Now the example. Suppose we want to write a program that
prints the words ‘‘Hell is filled with amateur musicians.”” We first
invoke our system editor and write the source code, which looks like
this:

main()
[
\
printf("Hell is filled with amateur musicians.\n") ;

}

