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INTRODUCTION

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.
T. S. Eliot, Little Gidding

This book has its origin in a seminar held at All Souls College, Ox-
ford, in the Spring of 1989. The aim of the seminar was to work through
Michel Lazard’s paper Groupes analytiques p-adiques, at least far enough to
understand the proof of “Lubotzky’s linearity criterion” (Lubotzky (1988)).
In fact, Lubotzky’s proof combined Lazard’s characterisation of p-adic an-
alytic groups with some recent results of Lubotzky and Mann (1987b) on
“powerful” pro-p groups. We found that by reversing the historical order of
development, and starting with powerful pro-p groups, we could reconstruct
most of the group-theoretic consequences of Lazard’s theory without having
to introduce any “analytic” machinery. This was a comforting insight for us
(as group theorists), and gave us the confidence to go on and develop what
we hope is a fairly straightforward account of the theory of p-adic analytic
groups.

The book is divided (like Gaul) into three parts. Parts I and II are
essentially linear in structure. The point of view in Part I is group-theoretic;
in Part II, more machinery is introduced, such as normed algebras and for-
mal power series. Between Parts I and II is an Interlude (Chapter 6): this
consists of a series of more or less independent digressions, describing ap-
plications of the results to various aspects of group theory. The reader with
a particular interest in one of these aspects might want to turn first to the
relevant section of Chapter 6, and then follow up the references therein to
earlier (and occasionally) later chapters. On the other hand, someone seek-
ing an introduction to p-adic Lie groups could omit the Interlude, without
disturbing the logical structure of the account.

We now outline the contents in more detail. Part I is an account
of pro-p groups of finite rank. Chapter 1 is a leisurely introduction to
profinite groups and pro-p groups, starting from first principles. Chapter
2 is about finite p-groups. A finite p-group @ is defined to be powerful if



G/GP is abelian (if p is odd; the case p = 2 is slightly different). The key
results established in this chapter are due to Lubotzky and Mann (1987a):
(i) if G is powerful and can be generated by d elements, then every subgroup
of G can be generated by d elements; and (ii) if G is a p-group and every
subgroup of G can be generated by d elements, then G has a powerful
normal subgroup of index at most p?(1°8(9)+2) (log to the base 2). Chapter
3 returns to profinite groups. Here the rank of a profinite group is defined,
in several equivalent ways. Defining a pro-p group G to be powerful if G/GP
is abelian (where  denotes closure, and the proviso regarding p = 2 still
applies), we deduce from the above results that a pro-p group has finite rank
if and only if it has a powerful finitely generated subgroup of finite index
(Lubotzky and Mann (1987b)). This is then used to give several aternative
characterisations for pro-p groups of finite rank. Chapter 4 continues with
the deeper investigation of finitely generated powerful pro-p groups. These
groups, being “abelian modulo p”, are in many ways rather like abelian
groups. In particular, each such group contains a normal subgroup of finite
index which is “uniform”; we shall not define this here, but note that the
uniform pro-p groups are exactly those studied by Lazard under the name
“groupes p-saturables”. Following an exercise in Lazard (1965), we show
that a uniform pro-p group G has in a natural way the structure of a finitely
generated free Z,-module, which we denote (G,+) (here Z, denotes the
ring of p-adic integers). (Defining an additional operation “bracket” on this
module, we also indicate how (G,+) can be turned into a Lie algebra over
Z,: this is the first hint of a connection with Lie groups.) It follows that
the automorphism group of G has a faithful linear representation over 1,,
and hence that G itself is “linear modulo its centre”. Part I concludes with
Chapter 5. Here we study the most familiar p-adic analytic group, namely
GL4(Zp), and show quite explicitly that a suitable congruence subgroup is
a uniform pro-p group. Together with the results of Chapter 4, this is used
to show that the automorphism group of any pro-p group of finite rank is

itself virtually (i.e. up to finite index) a pro-p group of finite rank.

The Interlude presents a variety of applications of the results ob-
tained in Part I (with occasional reference to results proved in Part II).

Although the six sections are to some extent independent of each other,



they are too short to make separate chapters, and we have put them all
together into Chapter 6. §6.1 is devoted to Lubotzky’s group-theoretic cri-
terion for a finitely generated group to have a faithful linear representation
in characteristic zero, and some variations on the same theme. (While the
proof of these results in their full glory depends on a forward reference to
Chapter 8, we remark that for certain group-theoretic applications, such as
those in §6.2, a linear representation with abelian kernel is good enough,
and the results in Chapter 4 suffice.) The next two sections are intended
to illustrate the power of such “linearity criteria” as a tool for attacking
purely group-theoretic problems. §6.2 outlines the proofs of some recent
results concerning residually finite groups subject to additional finiteness
conditions; among them, the fact that every residually finite group of fi-
nite rank is virtually locally soluble (Lubotzky and Mann (1989), and the
fact that a finitely generated residually finite group has polynomial sub-
group growth if and only if it is virtually soluble of finite rank (Lubotzky,
Mann and Segal(a)). §6.3 gives an elementary proof, for the special case of
residually nilpotent groups, of Gromov’s Theorem that a finitely generated
group of polynomial growth is a linear group (the idea of using p-adic ana-
lytic groups in this context was first used by Grigorchuk (1989), to prove a

stronger result).

§6.4, which is independent of §6.1, gives an outline of Leedham-Green
and Newman’s (1980) programme for classifying finite p-groups by co-class.
We present a complete proof of Leedham-Green’s theorem that every pro-p
group of finite co-class has finite rank, based on results from Chapter 3; we
also show that both the rank and the index of a uniform normal subgroup
are bounded above by a function of the co-class, for an infinite pro-p group

of finite co-class.

The last two sections of Chapter 6 are also independent of the pre-
ceding ones. §6.5 extends the Golod-Safarevi¢ inequality, concerning the
minimal number of relations needed to present a finite p-group, to the case
of pro-p groups of finite rank; a corresponding result is then derived for
certain abstract groups, including all finitely generated nilpotent groups. In
§6.6 we indicate how the Golod-Safarevi¢ inequality for pro-p groups can

be used to prove that certain discrete subgroups in SL,(C) cannot have
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the congruence subgroup property. The results of §6.5 and §6.6 are due to
Lubotzky (1983).
A different kind of group-theoretic application is described in Ap-

pendix C, where we have reprinted an announcement recently published
by one of the authors. This is concerned with the rationality of certain
Poincaré series, associated with the functions n — a,(G), where a,(G) de-
notes the number of subgroups of index n in a group G. (Though the author
of Appendix C uses the terminology of Lazard (1965), the relevant results
about pro-p groups can all be found in Chapter 4 and Chapter 9 of this
book.)

At this point we should mention an important early application of
Lazard’s theory: the proof by Bass, Milnor and Serre (1967) that every
representation of SL,(Z) is a polynomial representation, provided n > 3.
It would have taken us too far afield to give this proof in Chapter 6, but
it is worth remarking that some of the essential ingredients are explained
in this book: §6.6 shows that the pro-p completion of an arithmetic group
with the congruence subgroup property has finite rank; and it is shown in
Chapter 10 that every homomorphism between such groups arises from a

homomorphism between the associated Lie algebras.

Although Part II is headed “Analytic groups”, these do not appear
as such until Chapter 9. Chapter 7 is utilitarian, giving definitions and
elementary results about complete normed Q,-algebras which are needed
later. Chapter 8, loosely based on Lazard (1965), forms the backbone of
Part I In it, we show how to define a norm on the group algebra Q,[G] of
a uniform pro-p group G, in a way that respects both the p-adic topology
on Q, and the pro-p topology on G. The completion A of this algebra with
respect to the norm serves two purposes. On the one hand, an argument
using the binomial expansion of terms in A is used to show that the group
operations in G are given by analytic functions with respect to a natural
co-ordinate system on G, previously introduced in Chapter 4. On the other
hand, A serves as the co-domain for the logarithm mapping log : G — A.
We show that log(G) is a Z,-Lie subalgebra of the commutation Lie algebra
on A, isomorphic via log to the Lie algebra (G, +) defined intrinsically in
Chapter 4 (in fact, the proof simultaneously establishes that (G, +) satisfies
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the Jacobi identity, and that log(G) is closed with respect to the operation
of commutation). An appeal to Ado’s Theorem, in conjunction with the
Campbell-Hausdorff formula, then shows that G has a faithful linear rep-
resentation over Q,; it follows that every pro-p group of finite rank has a
faithful linear representation.

p-adic analytic groups are defined in Chapter 9. Although we in-
troduce p-adic manifolds, only a bare minimum of theory is developed (in
contrast to Serre (1965), for example, there is no mention of differentials).
Using the results of Chapter 8, it is shown that a pro-p group has a p-adic
analytic structure if and ony if it has finite rank, and, more generally, that
every p-adic analytic group has an open subgroup which is a pro-p group of
finite rank. These major results are due to Lazard (1965), except that he
refers to finitely generated virtually powerful pro-p groups where we have
“pro-p groups of finite rank”.

Chapter 10 is concerned with some of the “global” properties of
p-adic analytic groups. The first main result here is that every continuous
homomorphism between p-adic analytic groups is an analytic homomor-
phism, from which it follows that the analytic structure of a p-adic analytic
group is determined by its topological group structure. Next, it is shown
that closed subgroups, quotients and extensions of p-adic analytic groups
are again p-adic analytic; these results now follow quite easily from the cor-
responding properties of pro-p groups of finite rank. The chapter concludes
by establishing the equivalence of the category of p-adic analytic groups
(modulo “local isomorphism”) with the category of finite-dimensional Lie
algebras over Q.

The Campbell-Hausdorff formula, mentioned in connection with
Chapter 8, also plays an essential role in Chapter 10. A self-contained
(if rather ad hoc) proof of this is given in Appendix A. Appendix B
contains the proofs of some elementary facts about topological groups, used
in Chapter 10.

A topic which we have omitted altogether is the cohomology of ana-
lytic pro-p groups; this is the subject of Lazard (1965), Chapter V.

Survey articles covering various aspects of the book’s material are du
Sautoy (a), Mann (b) and Segal (1990).



For the sake of euphony, we have titled the book “Analytic pro-p
groups”; a more correct title would be “p-Adic analytic pro-p groups”. An-
alytic groups over other fields also deserve consideration; a Lie group in the
usual sense (over R or C) cannot be a pro-p group (except in the trivial,
discrete, case), but some extremely interesting pro-p groups arise as ana-
lytic groups over fields of characteristic p: for example, suitable congruence
subgroups in SL,(Fp[[t]]). The theory of such groups poses some exciting
challenges: they will have to be faced in a different book.

Sources

Most of the results in the book are not original. Much of Chapter
1 is “folklore”; the important Theorem 1.17 is due to Serre (unpublished).
Chapter 2 is based in Lubotzky and Mann (1987a). Chapter 3 is mostly
based on Lubotzky and Mann (1987b), with some new material. In Chapter
4, some of the results are due to Lazard (1965), and some are new. The
material of Chapter 5 is presumably known, though we do not have a specific
reference.

Chapter 6 contains references for the results discussed there. The
proof in §6.3 is new; the proofs in §6.4 are based on unpublished work of
Leedham-Green, Donkin, Shalev and Mann.

Part II, as a whole, is a re-working of material from Lazard (1965),
with help from Serre (1965) and Bourbaki (1989).



Notation

closure of X

subset

open subset, closed subset
subgroup

open subgroup, closed subgroup
proper subgroup

open proper subgroup, closed proper subgroup

normal subgroup

open normal subgroup, closed normal subgroup

group generated by X

centre of G

Frattini subgroup of G

automorphism group of G

group ring of G over K

centraliser of X in G

direct product of A and B

semidirect product of A by B

n-fold direct power of 4

direct sum of A and B

direct sum of n copies of (additive group) 4
minimal number of generators of G
minimal number of generators of G/[G, G]G?
rank of G

upper rank of G

dimension of V

p-adic valuation of =

p-adic absolute value of =

least integer > =

defined by 221 < » < 2A(7)



GL, n X n general linear group

Un n X n upper uni-triangular matrix group
M, n X n matrix ring

1, n X n identity matrix
C complex numbers

R real numbers

Q rational numbers

z integers

N non-negative integers
Z, p-adic integers

Qyp p-adic numbers

Fq finite field of size ¢
¥ =y lzy

[z,y] =z~ 'z¥, or —z + zy if z is in a module acted on by y
[Z1y.-s2Za] = [[£1,. -+ s Tn-1),Tx]

[z, ny] = [2,¥,...,Y], with n occurrences of y

[4,B] = ({[z,4]|z € 4, y € B})

[ s ss An) = [[Ag s o0y Api]; A

(4, »B] =[A,B,...,B], with n occurrences of B

X1} = {z"|z € X}

G™ = (G1"}) (if G is a multiplicative group)

7(G) = G, 1(G) = [12-1(G), G]

P,(G) = G, Pu(G) = [Pars(0), CIPai (G




