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FOREWORD

This book treats second order partial differential equations and unilateral
problems, as well as stochastic control and optimal stopping-time problems. It
deals with branches of mathematics which may at first sight appear totally differ-
ent and which have developed along quite independent lines, but which are in fact
strongly inter-related and which are capable of cross-fertilising each other.

The fundamental link lies in the interpretation of the solutions of certain part-
jal differential equations. This interpretation is an extension of the method
of characteristics which allows the solution of a linear first-order hyperbolic
‘equation to be expressed explicitly as a functional defined along the character-—

istic trajectories. A similar phenomenon arises in the case of parabolic or
elliptic equations, but the characteristic trajectories then become stochastic
processes. In very general terms, it is absolutely necessary to resort to

probabilistic models if we wish to be able to give explicit formulas for the sol-
utions of partial differential equations (or of systems of such equations).

With regard to nonlinear equations, an important method (but not the only one)
for expressing the solution of these equations consists of using the techniques
of optimal control. Again, this forms an extension of the Hamilton-Jacobi method
in the calculus of variations. The Hamilton-Jacobi equation is & nonlinear
hyperbolic equation of first order. Stochastic control leads to quasilinear equ-—
ations. The book by Fleming-Rishel gives an excellent discussion of the state of
the art. Certain variational inequalities which likewise constitute nonlinear
problems also possess a probabilistic interpretation. In this case we are deal-
ing with control problems in which the decision variable is a stopping time.

Chapter I, which is designed as an extended introduction, presents the problems
in formal manner and gives a more detailed description of the contents of the
book. We hasten to emphasise at this point that this book is by no means inten-
ded to be exhaustive in its treatment, either with respect to the probabilistic
models used or to the control problems treated. The probabilistic models are lim-—
ited to diffusions. The control can take effect via the drift or via the diffus-
ion term, or it can even be a stopping time. We also investigate differential
games problems, with or without stopping times.

Other probabilistic models and other control problems will be considered in a
second volume. In particular, we shall treat impulse control, which leads to
quasi-variational inequalities.

The book is designed so as to allow it to be read equally well by analysts and
by probabilists, and we have followed a policy of using the formalism and the
techniques from both disciplines. It is informative to be able to give, when
possible, two proofs of a single result: an analytic proof and a probabilistic
proof.  We have endeavoured to do this in order to bring out the advantage of us-—
ing the two types of approach in conjunction. The probabilistic methods undoubt-
edly are the more intuitive, in that in some circumstances they allow explicit form-
ulas to be used for certain quantities. The analytic methods, on the other hand, are
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undoubtedly the more powerful and more elegant when the variational formulation
and energy techniques can be applied. In this case, they are clearly more econ-
omical as far as assumptions are concerned. The probabilistic methods are very
well suited to estimates in the space L , and the analytic methods to estimates
in Sobolev spaces.

However, our objective in the present book is not to investigate nonlinear
problems of partial differential equations; rather, it is to obtain constructive
methods which will allow us to calculate, if necessary by using the resources of
Numerical Analysis, the solution of optimal control problems, in particular those
with stopping times (and,in the second volume, with impulse controls). We have
not attempted to take the subject matter as far as it can be taken, and we refer
the reader to the bibliography for further developments (using similar methods);
numerous applications are described in the references cited in the bibliography;
in particular the reader may consult Goursat [1], Leguay [1], Maurin [1],
Quedrat [1] and Robin [1]. For the numerical aspects we refer to Quadrat {11,
[2], Quadrat and Viot [1], and Kushner [1] and, for the numerical solution of
variational inequalities to R. Glowinski, J.L. Lions and R. Trémolizres [1].

The following table of contents shows the detailed layout of the volume.
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CHAPTER 1

GENERAL INTRODUCTION TO OPTIMAL STOPPING TIME PROBLEMS

Lo SYNOPSIS

This first chapter is intended to give a general introduction to the book as a
whole, and does not by any means attempt to present a rigorous theory; we intro-
duce stopping time problems in as intuitive a manner as possible, and we give a
number of examples of application as well as some idea of the techniques which
will be used and developed in the later chapters.

2. FORMAL DESCRIPTION OF STOPPING TIME PROBLEMS

We shall now give a description of the basic problems, initially taken to be as
simple as possible. We shall discuss a number of extensions and more complicated
situations a little later on.

We consider a stochastic dynamic system, whose state y(t) (€ R") evolves in
accordance with the following differential equation (in the sense of Ito):

= g(y(t))at + oly(t))aw(t)
(2.1)

y(0) =
&? .1), g(x) and o(x) are given functions on R", in (respectively) R™ and
(R Furthermore, w(t) is a standardised n-dimensional Wiener process;

LB, we have

vt, w(t) is a Gaussian random variable with values in RY,
(2.2) with zero mean and with variance

B wi(t) wj(s) = 5ijmin(t,s) s 1,5 =1 sse ns

The function g is termed the drift and the function o is termed the diffusion.
The initial state is x ¢ R, (in general non-random).

If ¢ = 0, (2.1) is an ordinary differential equation. Very formally, equation
(2.1) states that if at the instant t the system has the known state y(t), then
‘over the interval (t,t + At) (At small) the variation Ay(t) of the state is a
Gaussian R.V. (random variable) with mean g(y(t))At and with variance oo*(y(t))At.

Naturally, in order for (2.1) to be meaningful, it is necessary to make a
number of assumptions with regard to the functions g and o which ensure the
existence and uniqueness (in a sense which will need to be defined) of the sol-
ution of (2.1).

We assume that we have access to all information on the past and present state
of the system (¥*), (but not, of course, on the future state). The information
at the instant t is then (mathematically) defined in terms of a o-algebra ¥, such

(¥) This will be the case in the majority of the situations considered in this
book. Some cases in which only partial informetion is available will also be
treated.
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X t. . :
that y(s) is 'u't— measurable for all s < t. The family ¥ is an increasing
family, which in practice can be either the family of o-algebras generated by the

process y(t) itself,,
F = o-algebra generated by y(s), s < t, o
or the family generated by w(t), or even a family with a wider definition.

The decision variable (the control !) is then a stopping time, i.e. a positive
R.V. & such that

(2.3) event {6< t} cst .

The property (2.3) means that at any instant t, taking account of the available
information (i.e. ®% ), we know whether or not 6 < t.

Furthermore, let ¢ denote a domain in R” and let 1 be the first exit time of
the process y(t) from & , i.e.

t=inf {t20 | y(t) £ o} (*) .
We then define a cost function

1,(0) = E[ID"“_ﬂy(t))(expLt o(y(s))as)at +
(2.4 ¢ W (xgeq e, ollat +

+ B (g, e[ erat]

where the functions f, ¥, h, ¢, are given and where

1if06<

X =
< 1o irex v

We observe that y(t), T depend on the point x, and this justifies using the
notation JX(B) for the left-hand side of (2.4).

At this level x is a simple parameter, but it is of fundamental importance to
introduce it explicitly for reasons which will become apparent later. The
functional J_(8) decomposes into two parts, an integral cost, corresponding to what
is paid while the process is not stopped, and_a final cost which is itself exp-—
ressible in two parts, namely q)(y(e))(expj‘o c dt) if 8 < 7, (i.e. of we decide

to stop the process before it exits from the domain O ) or h(y(t))expfo'rc dt

if 8 2 1 (i.e. if the process is stopped after the instant at which it first
exits from the domain & ).

Since it is permissible to take as unknown 6AT = min(6,t) instead of & , we
may interpret O as being a constraint on the stopping time, i.e. the process
will be stopped, at the latest, when it first exits from (> ; where this has
not already been done, a balance will be established between the integral cost
and the final cost. Naturally, O may be equal to Rn, in which case T = + o,

Finally, the exponential term may be interpreted as an actualisation of the

costs; for example if c(x) = - B, where B is a positive constant, then B is a rate
of interest.

(" 1r x £O® , then t=0.
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We put

(2.5) u(x) = Inf JX(B).
5]

The first fundsmental problem is concerned with the analytic characterisation
of the function u (is it possible to find a set of relations of which u is a
solution, and if possible the unique solution?). Having obtained this analytic
characterisation, the second fundamental problem is then to use this to deduce
the existence of an optimal stopping time, i.e. a stopping time éx such that

(2.6) u(x) = 7,(8) v .

Naturally, in addition to establishing the existence, it is important to be
able to give qualitative information on 6 and also to provide some means of cal-
culating the solution. X

The analytic characterisation of the function u proceeds via the definition of
an adequate functional space, which poses the problem of the regularity of u as
a function of x. [ ]

So far, we have been describing a stationary stopping time problem; i.e. the
functions appearing in (2.1) and (2.4) do not depend on time, the initial instant
is 0, the horizon is infinite (i.e. 6 is not bounded sbove, a priori, by a
number T).

We shall now give the "nonstationary analogue" of the above problem. The
functions g, o, £, ¥, h, ¢ in this case depend on time. We also take a function
u (x) and a horizon T < o, The initial instant is t < T; the evolution of the

system over [t,T] is described by

dy = gly,s)ds + o(y,s)aw(s), s>t
(2.7)
y(t) =x .

If 6 is a stopping time such that 6 e [t,T], we put

I.4(0) = E[JteAT £(y(s),s) (eXPJ;S c(y,\)dr)ds +

)
(2.8) + 4(y(8),8)xg rpp X[y c(y,8)ds +

+ n(y(7),%)x eprtT c(y,s)ds +

<06, t<T
T
+ (¥ (1)) Xg_gpe epr; c(y,s)ds].

The stopping time T is the first instant of exit from & , after t.(¥)
The terms f, ¥, h have a meaning analogous to that given for (2.4). The

T . . .
supplementary term u(y(T))XT=eA'tefot cds is the final cost when we decide not to
stop the process before T and if the process has not left O before T.

The analogue of (2.5) becomes

(*)Ifx%(} , then T = t.
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(2.9) u(x;t) = Inf J_(6) .
6

The problems which arise are essentially the same as in the stationary case.

3. ANALYTIC CHARACTERISATION BY DYNAMIC PROGRAMMING

Dynamic programming provides a (formal but highly intuitive) technique for
obtaining the relations which the function u has to satisfy. For further
generality, we shall consider the nonstationary case.

We put
Q=06x]06T7,2=006x10T,T=0306.
A certain number of relations are obvious. First,
(3.1) u(x,T) = u(x), u(x,t) = h(x,t), x,t € 5.

Moreover, from the definition of u, we have
u(x)t) < th(t)
and if x €3 @ =T and t < T we have th(t) = ¢(x,t), so that

(3.2) u(z,t) < ¢(x,t) , x €6, t <1,
Let us now consider that the stopping times 6 have to satisfy the constraint
T>0=2t+686, 6§>0

where § will tend to O (of course, this assumes t < T). We also assume
X €@ ;then T > t and for & sufficiently small (random), we have

t+ 8 <1 (¥). At the instant t + 6, the state of the system has become
(approximately)

x +-6g(x,t) + ofx,t)(wl(bst) - w(t)).

From the definition of the function u, we will have to 'pay', at the instant
t + 8, a cost greater than or equal to

u(z+8g(x,t) + ofx,t) (w(s+t) - w(t)),t+8) ,

this cost having to be actualised at the instant t, and therefore multiplied by
T+ t+8 .

exp.[ cds where exp f cds ~(1+6c(x,t)). We must also pay the integral cost
t t

between t and t + §, the process not having been stopped on this interval. Thus,

by forcing the process not to stop on the time interval (t, t + §), we may expect

to have to pay, at most, a cost (approximately) equal to

X = 8£(x,t) + E(1+6c(x,t))ulx+bg(x,t) + o(x,t) (w(s+t) = w(t)),t+8).

However, from the definition of the function u, u(x,t) < X.

(*) The formal manipulations which follow actually suppose § to be non-random ...
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If the function wu is once-differentiable with respect to t and twice-
differentiable with respect to x, we can write an expansion of X in terms of
§, as follows

du ou du
X=5f+u+6;u+6 . .g+6d—t+Eo—x. o(w(t+6) - w(t)) +
+%E S;‘é ofw(t+8) - w(t)). o(w(t+8) - w(t)).

From the properties of the Wiener process, this latter expectation is equal to
(tr denoting the trace):

1

2
(3.4) i 2;2“ oot 6 .

It is therefore of fZrst order in & and not of second order, as might have been
expected by analogy with Taylor expansions in a deterministic case.

Moreover

(3.5) Eg—: olw(t+8) - w(t)) = 0 .

We now reconsider the inequality u < X, taking account of (3.3), (3.4),(3.5).
The term u (of order 0) vanishes. We can therefore divide by 6§ , and by making
§ tend to O we obtain:

du du 1 ou
.6 f =2 8% gl
(3.6) +ou 4 = 5+ot+2tr§260‘*20.

We are thus led to introduce a family, indexed by t, of differential
operators with respect to x, namely

(3.7) (t) i 2
k% § Alt) =-fa, . —— -Zg, — -¢
i3 ij éxiaxj 3 J axj
where the matrix a = aij is defined by
& o
== .

With this notation, (3.6) may be rewritten in the form

(3.8) -% + Alt)hus<rt .

Pinally, it is worth noting that at the instant t we have two possibilities:
either we stop the process immediately, or we allow the process to evolve freely



