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Foreword

To be good at physics you no longer have to be good at calculating.

When I started doing physics in the early 1970s, it was generally thought that being able
to do long calculations by hand was an essential skill. But as it happens I was never very
good at such calculations. And so I looked for an alternative, and before long I found one: I
discovered that I did not really need to do the calculations myself—I could get a computer
to do them instead.

My physics papers from the late 1970s were full of elaborate calculations. And from
seeing this many people came to the conclusion that I must be a great calculator. But in
fact that was far from the truth, and what was actually going on was that I was doing all
my calculations by computer.

Of course, in those days it required a considerable amount of programming effort to
get a computer to do one’s calculations—particularly when algebra and graphics were
involved. But after a few years I realized that with new generations of computers and
software engineering tools it would actually be possible to build a single software system
that would be able to handle all the various kinds of calculations that one needed to do.
And from this realization I came in the end to develop Mathematica.

So now that Mathematica exists, what does it mean for physics? In the years since the
first version of Mathematica became available (version 1.0 was released on June 23, 1988),
a vast amount of new physics has been done with it. Indeed, for example, if one looks today
at any of the leading physics journals, one can tell that a large fraction of the calculations
and pictures in them were done with Mathematica.

But it is not just at the level of research that Mathematica affects the way physics is
done. Anyone who learns physics today can do so in a very different way because of
Mathematica.

And that is the point of this book. What the authors have done is to take the topics from
a mainstream physics course and show how each of them can be handled in a new way
with Mathematica.

The results are impressive. Over and over again what was once a calculation too lengthy
to be reproduced as part of a course now becomes a few lines of Mathematica input that can
be executed in a matter of seconds. And instead of having to explain in painful detail the
mechanics of the calculation, one can concentrate on the conceptual issues that underlie it.

One of the things that one sees in many of the examples in the book is the extent to
which Mathematica has narrowed the gap between physics learning and physics research.
For once a calculation has been set up in Mathematica, one can try the calculation in many
different cases—not just ones already covered in textbooks, but also ones that may never
have been tried before.
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Foreword

This book will no doubt be read by many students of physics and many professors.
Students may wonder how many of the calculations it describes could ever have been
done before Mathematica. Perhaps sometimes their professors will tell them tales from the
heroic age of hand calculation. But mostly I hope that students and professors alike will be
able to use the technology that we have built and material of the kind that is included in
this book to learn and discover physics in a new and exciting way.

Stephen Wolfram
Creator of Mathematica



Introduction

Computer algebra software has already had an important impact on the way physics is
taught and research is performed. While computers cannot replace thinking, they signif-
icantly enhance problem-solving abilities of the scientist and student by eliminating the
tedious mathematics. As computers become more powerful and more readily available, the
scope of problems solved in both research and teaching tremendously expands.

This book serves as a guide for using the computer algebra program Mathematica for
physics research and teaching. The flexibility of Mathematica to manipulate analytical,
numerical, and graphical expressions will further broaden the scope of problems that the
student and researcher can solve.

Physics is not a spectator sport. The best way to demonstrate Mathematica is by solv-
ing a variety of physics problems chosen to illustrate its ability to display the output in
many forms. A significant asset of Mathematica is the ease with which results can be vi-
sualized. This feature brings physics problems “alive” so that the reader can interact and
experiment with the solutions. One can change the parameters and immediately observe the
consequences, thereby gaining deeper insight into the physics of the solution. Instead of
being throughly exhausted by the burdensome mathematics required to obtain the answer,
Mathematica enables us to focus our attention on understanding the solution.

HOW TO USE THIS BOOK

This book is intended for undergraduate students, graduate students, and practicing physi-
cists who want to learn new Mathematica techniques for solving a general class of physics
problems. For the student, we expect this text to be a supplement to the standard course
texts in mechanics, electrodynamics, relativity, and quantum mechanics; the student should
use this book to get ideas on how to use Mathematica to solve the problems assigned by the
instructor. Since we cover the canonical problems from the core courses, the student can
practice with our solutions, and then modify our solutions to solve the particular problems
assigned. This should help the student move up the Mathematica learning curve quickly.
This book is also suitable for a course designed to teach the applications of Mathematica
to physicists.

As such, the design of this book is more like a reference book than a novel to be read
cover to cover. Each problem is self-contained (up to user-defined functions discussed at
the beginning of each chapter), so the reader can go immediately to the portion of the book
that is relevant to his or her problem.
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Introduction

There are two sections of the book which we recommend all readers examine before
trying the problems.

o The section in this preface on troubleshooting, so that the reader knows where to
turn in case difficulties arise.

e The first chapter contains useful information about style, notation, and short-cuts
that we will make use of throughout the book.

Note that we assume the reader is reasonably familiar with Mathematica (at least at the
level of the tutorial in the Mathematica manual), so we focus on the physics applications
and not on rudimentary Mathematica techniques.

The book consists of two levels of material. The few sections of each chapter are readily
understandable by the undergraduate physics student. The latter portions of the chapters are
intended for advanced undergraduate and graduate physics students, and cover a broader
range of topics.

Each of the chapters 2 through 10 are divided into three parts:

e an introduction to the physics and Mathematica commands;
e solved problems that cover the standard ideas and methods found in the discipline;
e unsolved exercises.

As the reader gains insight into the power of symbolic computations, they can easily extend
the techniques demonstrated here to go beyond these examples and explore more difficult
problems.

ABOUT THE ELECTRONIC SUPPLEMENT

The Mathematica input code for the entire book is available in the electronic supplement
so that you can begin working the examples immediately. We will also post tips and sug-
gestions about using this book, extensions to other problems and related fields, and bug
fixes (should weencounter any).

The electronic supplement is available as item number 0206-862 from MathSource(TM).
MathSource is an on-line archive of Mathematica related materials contributed by Wolfram
Research and Mathematica users around the world. You can reach this site at:

http://mathsource.wri.com/
The material is also available from the authors web sites at:
http://www.physics.smu.edu/~olness
and
http://darkwing.uoregon.edu/~phys600/
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HOW TO USE THE ELECTRONIC SUPPLEMENT

To spare the reader tedious typing, we have put all the source code for each chapter into a
single notebook file. This enables the reader to start solving problems immediately without
re-typing the lengthy commands. Furthermore, if there is any confusion about what input
we used to generate these problems, you can simply cross-check with the source code.

For example, if you want to solve Problem 6 in Chapter 7, all you need do is to open
the source code for chapter 7 (ch7.nb), execute the initialization cells, and then proceed
directly to problem 6 (or whatever problem you choose) and begin working.

COMMUNICATION WITH THE AUTHORS

We welcome any comments and suggestions regarding this book. You may contact us via
e-mail or regular mail at:

Robert Zimmerman

Institute of Theoretical Science

University of Oregon

Eugene, OR 97403

bob@zim.uoregon.edu

Fredrick Olness

Department of Physics
Southern Methodist University
Dallas, TX 75275-0175

olness @mail.physics.smu.edu

We welcome bug reports, and will post such information on the MathSource server (should
we encounter any). However, we are unable to offer any help debugging problems specific
to the compatibility of different Mathematica versions or hardware installations; for this
type of assistance, we must refer you to the previous section on Troubleshooting, or to your
local system manager.
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Troubleshooting

This manuscript was generated directly from a Mathematica notebook to minimize the
possibility of introducing errors. The draft manuscript was written in Mathematica, and
then converted to Tex using the TexSave feature. Final formatting was performed using
the Tex source. -

The final version of the Mathematica code was run using version 4.1, but is fully com-
patible with all Mathematica versions back to 3.0.

There are subtle differences between different versions and implementations of Math-
ematica. This means that on occasion the reader will find that some of the examples pre-
sented in this book need to be slightly modified to adapt to your particular version. We
have tested these examples extensively on different platforms and with different versions
to ensure that they are robust. However, we list below the most common difficulties that
the reader is likely to encounter.

In our examples, we have been careful to present enough intermediate output so that the
reader can cross-check their results for consistency. This allows the reader to isolate any
differences that may arise, and find the cause quickly.

Possible TEX Conversion Errors

The typesetting features of Mathematica significantly enhance the user’s ability to read
and understand the Mathematica output. Unfortunately, this also means that the process
of converting the Mathematica code to TgX is significantly more complex. While we have
been very careful to avoid errors, there is the possibility that some characters are corrupted
in the conversion process. Unfortunately, one of the more common errors is to have missing
braces “{“ and *“}”. For this reason, in part, we have posted the complete set of input files on
the web. Should you encounter a “mysterious” problem that you suspect may be linked to
a typographic error, you can use the input source code (which has not had any conversion)
to ensure you have the correct expression. In fact, we recommend you use the input source
code from the web in general to save yourself the effort of re-typing our expressions.

Order of Roots in Solve

A significant difference between different Mathematica versions is the order of the solu-
tions returned by Solve and DSolve. Throughout the book, you will note we are careful
to select the desired root using the [ [i]] notation. If you have difficulty with the prob-
lems, this is one of the first places to look. Compare the intermediate output displayed in
the book with your results. Use this information to isolate the problem, and determine if it
is due to the ordering of the roots of the Solve command.

XV
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Troubleshooting

Debugging Techniques

To save paper (and trees), we have not displayed intermediate output for all expressions.
Additionally, we have not displayed intermediate graphics output using the $Display-
Function->Identity command. While this is a good practice when writing a book,
when we were developing the problems we did display this intermediate output to help
guide us through the problem; only after we obtained our solution did we go back and
“clean up” the output.

How to Debug Modules and User-Defined Functions

In Chapter 3, Section 2, Problem 5, (Understanding the User-defined procedure small-
Osc) we discuss how to redefine a Module so that the variables are Global and can be
examined. This allows the reader to debug a Module program by stepping through each
statement of the Module individually to try and isolate the error. This is a very useful
debugging technique.

Commands That Never Return an Answer

In cases where the Mathematica command takes a long time (more than a minute on a
~1GHz Pentium 4) to return an answer, we have indicated this in the text. If you wait
a long time, get no output, and suspect a problem, there are many ways to approach this
problem. The most obvious is to break the procedure up into smaller steps. We often group
commands together to shorten our solution. We must confess that when we initially solved
the problem, we actually performed each step individually, examined the output, and after-
wards decided the most efficient set of steps to use and display.

Avoid the Fullsimplify Command

In particular, if you are having trouble with lengthy expressions, try to avoid the Full-
Simplify command. Until you know the scope of your problem, you will find that the
Expand, Together and ordinary Simplify command are much more efficient at re-
ducing the answer. Once you have massaged the result into something Mathematica can
swallow in a single bite, then you may want to try and FullSimplify the result.

Animation

The details of animating a series of graphics varies widely with different implementations
of Mathematica. In this text we simply show the reader how to generate the sequence
of graphics. The reader must refer to the computer specific user guide for the details of
displaying the animation. -

Clearing Variables

If Mathematica is yielding unusual results, a common cause is that there are variable defi-
nitions (possibly from a previous problem) that are conflicting with the assumed definitions
for the present problem. The command Clear ["Global**"] will solve most of these
problems. In fact, each chapter of this book was initially a single Mathematica notebook.
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Using the Clear [ "Global" *"] command, we were able to run each chapter as a single
Mathematica session from start to finish. (Again, this helped us eliminate errors, and verify
that our examples were correct.) While this command should solve most all problems of
this type, it may be worth restarting the kernel if mysterious problems still persist.

WHAT’S NEW WITH MATHEMATICA IN THE SECOND EDITION

The first edition of our text was produced with Mathematica version 2.2. The current ver-
sion of Mathematica has dramatically changed since that time.

o Typesetting. Beginning with version 3.0, Mathematica introduced typeset input and
output. This significantly shortens the length of the output (compare with our first
edition); more importantly, it makes the input and output much more readable. Ex-
pressions that previously would span multiple pages (or fill the computer screen) are
now succinctly displayed.

e Mathematica has greatly expanded its knowledge base. In the first edition, we often
had to help Mathematica with complex integrals or differential equations. In this
edition, Mathematica is fully capable of evaluating such expressions.

o For our first edition in 1995, it took about an hour on a “modern” computer to execute
a chapter. With improved Mathematica algorithms and improved CPU’s, an entire
chapter runs in a few minutes.

WHAT’S NEW WITH THIS BOOK IN THE SECOND EDITION

In this second edition we have significantly expanded the number and variety of problems.
In particular, we have expanded the book from seven to ten chapters; the three additional
chapters are on Nonlinear Systems and Chaos, Discrete Systems, and Chaos and Orbiting
Bodies. New problems and exercises have also been added to all chapters.
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CHAPTER

Getting Started

1.1 B INTRODUCTION

1.1.1 B Computers as a Tool

The solution of realistic physics problems is often hampered because the algebra is too
complex for anyone but the dedicated researcher. Just as the calculator eliminated labo-
rious numerical computations, symbolic software programs eliminate arduous algebraic
computations. While computer power is no substitute for thinking, it spares the scientist
from performing mundane mathematical steps, and thereby frees time for creative think-
ing. The scientist is able to explore complex relationships among quantities, ask “What
if ... 77, and obtain an immediate answer. Mathematica is only one of the popular systems
for doing such calculations; other systems include Maple, Derive, Axiom, Macsyma, and
Reduce.

Because there are many ways to solve physics problems, we present a variety of styles
to illustrate different ways of solving similar problems using Mathematica. We emphasize
that the solutions presented here are not necessarily the most efficient for dealing with all
possible instances. While we do discuss writing efficient Mathematica code, we sometimes
sacrifice the most elegant or efficient solution in favor of one that is most easily understood
pedagogically. For example, we introduce some user-defined procedures to automate repet-
itive tasks in an intuitive way. Had our goal been to write an efficient *“black-box” program
that could handle all possible inputs in an error-free manner, the routines would be less
pedagogical, more complex to read, and encumbered with additional code to trap error
conditions. Where appropriate, we prompt the reader to expand upon our solutions.

Each chapter has a short overview of the major physics and mathematics topics empha-
sized in the chapter. The problems are chosen to cover a broad range of physics problems
and to illustrate a variety of Mathematica procedures. Exercises are included at the end of
the chapter to reinforce the techniques developed in the examples, and to suggest additional
applications not covered.

Our goal is to focus on the Mathematica techniques that are most appropriate for solv-
ing physics problems; thus, we assume the reader is familiar with the most basic features
of Mathematica as discussed in The Mathematica Book, Fourth Edition, by Stephen Wol-
fram. At a minimum, the reader should be familiar with the Tour of Mathematica, which is
contained in The Mathematica Book.



Chapter 1 Getting Started

1.1.2 W A Note about Notation and Style

Here we make a few notes about what notation we do and do not use throughout the text,
as well as some stylistic issues.

1.

We do not use subscript notation for variables. Although this often makes the output
more readable, we encounter some very subtle features when using subscript nota-
tion. Therefore, our preference is to create variables in the form {x1, x2, x3, ...} rather
than {x,, x,, X5, ...}. We explain this in more detail in the next section.

. Initially we will type certain symbols in their expanded form. For example, the sym-

bol “~>” is equivalent to “~”; however, we will initially enter this expression in the
format “~>” so the beginning Mathematica user knows exactly what to type.

We often use special characters, including letters from the Greek alphabet. These
can be entered using the palettes, or using keyboard short-cuts. For example, the
character 8 can be entered by typing (esc)q{esc), or by typing (esc)\theta(esc), where
(esc) represents the escape key. The latter form may be more familiar to those who
use the TgX typesetting program.

In general, we avoid introducing short-hand definitions for commands with a lengthy
name. While we often use such short-cuts in our personal work, doing so here makes
it difficult for the reader who must first look up our definition for our short-cut, and
then look up the Mathematica command. This philosophy is good practice when
you are sharing your notebooks with others. In place of using short-cut commands to
save typing, Mathematica has a very useful menu feature called Complete Selection.
Refer to the description of this command in the Help Browser.

. We will use the semicolon *;” to suppress unwanted intermediate text and graphics

output. While this makes the book more compact, when you are initially solving a
problem you probably will want to view the intermediate output to check for errors.
Our preference is to turn off the automatic spell checking within Mathematica.
Again, this is helpful for debugging, but for a finished product (such as this book), it
is not necessary.

In[l1]:= Off[General :: spelll];
Dff [General :: spell];

1.1.3 W Notation and Symbols (For Experts Only)

Here we explain some of the subtle features of Mathematica notation. Beware: you should
read this section only if you are an experienced Mathematica user, and need to use sub-
script notation for variables, e.g., {x;, X,, x5, ...}. Otherwise, you should immediately skip
to the next section. .

We include this section here so that if you encounter strange behavior when trying to use
subscript notation for variables, you will know where to look for explanations. This section
also uses some commands that are not introduced until later in this chapter; therefore, you
may find it best to come back to this section after reading the rest of the chapter.

Subscript notation for variables is tricky because you can have two expressions that have
identical output display formats, but they can in fact have very different internal forms.
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Debugging Mathematica code with such expressions becomes complicated, and this is
why, in general, we do not use subscript notation in this book.

For example, let us try to use the symbol x; as an independent variable. If we enter this
symbol using the basic input palette or with a keyboard short-cut, we obtain

In[2]:= %x,//FullForm
Out[2]= Subscript(x, 1]

When we try to use such notation in a simple expression, we are in for some surprises.
The following expression looks simple enough.
In[3]:= term =a x;, + bx, + cx
Out[3]= cx+ax; +bx,

But, if we try to make a substitution for the variable x (without any subscript), which we
intend to be a variable independent of x;, we obtain

In[4]:= texm/.{x-> 1}

Out[4]= c+al; +bl,

The result is obviously nonsense.

Next, we make use of the Symbolize function contained in the package Utili-
ties'Notation".

In[5]:= <<Utilities‘Notation®

In[6]:= ?Symbolize

"Symbolize [boxrs] forces any box structure matching boxrs to be
treated internally as a single symbol anywhere it appears in
an input expression."

However, when we try this command in a simple manner, the result is an error.

In[7]:= Symbolize[x,]

Symbolize :: badSymbolizeBoxes : The Symbolize boxes x do not have an em-
bedded NotationBoxTag TagBox. The Symbolize statement Symbolize[x ] may not
have been entered using the palette, or the embedded TagBox may have been
deleted. The embedded TagBox ensures correct parsing and retention of proper
styling and grouping information. 1 1

Out[7]= $Failed

If, instead, we use the Symbolize command from the Notation Palette, we get a vari-
able that appears to be identical to x; defined above, but has a very different internal form.

In[8]:= %, //FullForm
(*» Entered from the Notation Palette *)

Out [8]= NotationBoxTag [SubscriptBox["x", "1"]]



