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Preface

University Physics is intended for students of sci-
ence and engineering who are taking an introduc-
tory calculus course concurrently. The complete
text may be taught in an intensive two- or three-
semester course and is also adaptable to a variety of
shorter courses. Primary emphasis is on physical
principles and problem solving; historical back-
ground and specialized practical applications have
been given a place of secondary importance. Many
worked-out examples and an extensive collection of
problems are included with each chapter. Univer-
sity Physics is available as a single. volume or as two
separate parts. Part I includes mechanics, heat, and
sound, and Part II includes electricity and mag-
netism, optics, and atomic and nuclear physics.

In this new edition, the basic philosophy and
outline and the balance between depth of treatment
and breadth of subject-matter coverage are un-
changed from previous editions. We have tried to
preserve those features that users of previous edi-
tions have found desirable, while incorporating a
number of changes that should enhance the book’s
usefulness. Here are the mosi important changes.

1. The mks system of units, with the conventions
and nomenclature of the'Systéme Internationale,
has become the principal unit system in the book. In
this system the joule is the fundamental unit of
energy of all forms, including heat. In the first half
of the book, however, some examples and problems
using English units have been retained.

2. The material on atomic and nuclear physics.
(Chapters 44 through 46) has been completely re-
written and expanded into three chapters, now in-
cluding an elementary discussion of physics of sol-
ids, high-energy physics, and elementary particles.
3. A new chapter on relativistic mechanics has been
added. Positioned somewhat arbitrarily at the end
of the mechanics material, this chapter can be taken
up earlier or later, or may be omitted completely if
desired.

4. The chapter on electromagnetic waves has been
completely rewritten, to exhibit more clearly and in
simpler context the relation of wave propagation to
the basic principles of electromagnetism.

5. Several sections have been added to broaden
subject coverage. Among these are: 16-7 Examples
(of calorimetric calculations), 19-25 (practical as-
pects of) Energy Conversion, 23-5 Musical Inter-
vals and Scales, 23-7 Applications of Acoustic
Phenomena, 28-10 Physiological Effects of Electric
Currents, 38-7 Absorption (of light), 38-8 Illumina-
tion, 41-10 Defects of Vision, 42-1 Coherent
Sources (of light), 42-13 Holography, 45-7
Semiconductors, 45-8 Semiconductor Devices, and
46-11 Radiation and the Life Sciences.

6. Some material has been reorganized. The mate-
rial on surface tension has been shortened and in-
corporated into the hydrostatics chapter; the treat-
ment of thermoelectricity has been shortened to a
single section. The chapter on electromagnetic in-
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duction has been rearranged to exhibit more clearly
the various applications of Faraday’s law to moving
conductors and to stationary conductors in varying
fields. The material on inductance and associated
problems has been removed from this chapter and
placed in a separate chapter.

7. Many sections have been completely rewritten
for improved clarity and pedagogical effectiveness.
These include the beginning of Chapter 7 (Work and
Energy), Chapter 8 (Impulse and Momentum),
Chapter 11 (Harmonic Motion); -Section 254
(Gauss’s Law); Chapter 26 (Potential); Section 27-7
(Polarization and Electric Displacement); Section
29-7 (R-C Circuits); Section 32-6 (Ampére’s Law);
and Chapter 35 (Magnetic Properties of Matter), to
cite only a few examples. In a few cases, such as the
opening sections of Chapters 7 and 8, the rewriting
may create the illusion of de-emphasnzmg the use of
calculus. Not so; the treatment is just as rigorous as
in previous editions, but has been rearranged to
follow the pedagogical principle of moving from the
simple to the complex.

8. About 300 new problems have been added bring-
ing the total to over 1400. The added problems
provide greater variety and also broader subject
coverage than in previous editions. The authors
have resisted the temptation to key problems to
specific sections of text. Learning to select the prin-
ciples appropriate for a specific problem is, after all,
part of learning to solve problems. In addition,
many problems require material from more than one
section.

9. In every case where material has been rewritten,
sound pedagogical principles and the authors’ own
teaching experience have. guided the revision. In
some instances we have shifted from a sequence in
which a principle or concept is presented initially in
its full generality to one that begins with special
cases and then progresses to the more general
statement. We hope thus to help the student attain
the same final level of sophistication as previously
by climbing a less steep slope.

The text is adaptable to a wide variety of
course outlines. The entire text can be used for an
intensive course two or three semesters in length.

For a less intensive course, many instructors will
want to omit certain chapters or sections to tailor
the book to their individual needs. The format of
this edition facilitates this kind of flexibility. For
example, any or all of the chapters on relativity,
hydrostatics, hydrodynamics, acoustics, magnetic
properties of matter, electromagnetic waves, opti-
cal instruments, and several others can be omitted
without loss of continuity.

Conversely, however, many topics that were

" regarded a few years ago as of peripheral impor-

tance and were purged from introductory courses
have now come to the fore again in the life sciences,
earth and space sciences, and environmental prob-
lems. An instructor who wishes to stress these kinds
of applications will find this text a useful source for
discussion of the appropriate principles.

In any case, it should be emphasized that in-
structors should not feel constrained- to work
straight through the book from cover to cover.
Many chapters are, of course, inherently sequential
in nature, but within this general limitation instruc-
tors should be encouraged to select among the con-
tents those chapters that fit their needs, omitting
material that is not relevant for the objectives of a
particular course.

Again, we wish to thank our many colleagues
who have contributed suggestions for this new edi-
tion. In particular, Prof. Robert Folk, Prof. Shelden
H. Radin, and Prof. Charles W. Smith have read the
entire manuscript, and their critical and construc-
tive comments are greatly appreciated.

Hanover, New York, F.W.S.
and Pittsburgh M.W.Z.
November 1975 H.D.Y.

. During the final stages of production of this book,

word was received of the sudden death of Francis
Weston Sears on November 13, 1975, at the age of
77. His shining example of excellence in physics
education was an inspiration to colleagues and stu-
dents alike, and he will be sorely missed.

Mark W. Zemansky
Hugh D. Young
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Chapter 1

Composition

1-1 THE FUNDAMENTAL INDEFINABLES OF ME-
CHANICS -

Physics has been called the science of measurement.
To quote from Lord Kelvin (1824-1907), “I often say
that when you can measure what you are speaking
about, and express it in numbers, you know some-
thing about ‘it; but when you cannot express it in
numbers, your knowledge is of a meagre and unsatis-
factory kind; it may be the beginning of knowledge,
but you have scarcely, in your thoughts, advanced to
the state of Science, whatever the matter may be.”

A definition of a quantity in physics must provide a
set of rules for calculating it in terms of other quantities
that can be measured. Thus, when momentum is
defined as the product of “‘mass’ and ‘‘velocity,” the
rule for calculating momentum is contained within
the definition, and all that is necessary is to know
how to measure mass and velocity. The definition of
velocity is given in terms of length and time, but
there are no simpler or more fundamental quantities
in terms of which length and time may be expressed.
Length and time are two of the indefinables of mechan-
ics. It has been found possible to express all the
quantities of mechanics in terms of only three inde-
finables. The third may, with equal justification, be
taken to be ““mass” or “force.” We shall choose mass
as the third indefinable of mechanics.

and Resolution

of Vectors

In geometry, the fundamental indefinable is the
“point.” The geometer asks his disciple to build any
picture of a point in his mind, provided the picture is
consistent with what the geometer says about the
point. In physics, the situation is not so subtle.
Physicists from all over the world staff international
committees at whose meetings the rules of measure-

.ment of the indefinables are adopted. The rule for

measuring an indefinable takes the place of a defini-
tion, and such a rule is sometimes called an opera-
tional definition.

1-2 STANDARDS AND UNITS

The set of rules for measuring the indefinables of
mechanics is determined by an international commit-
tee called the General Conference on Weights and
Measures, to which all the major countries send
delegates. One of the chief functions of the Confer-
ence is to decide on a standard for each indefinable.
A standard may be an actual object, in which case its
main characteristic must be durability. Thus, in 1889
a meter bar of platinum-iridium alloy was chosen as
the standard of length, because this alloy is particular-
ly stable in its chemical structure. However, the
preservation of a bar of this material as a world
standard entails a number of cumbersome provi-
sions, such as making a large number of replicas for



2 Composition and resolution of vectors

Carrying arm

Fig. 1-1 (a) Etalon and (b) Michelson interferometer for
" use in measuring the distance x in terms of the wavelength
of light.

all the major countries and comparing these replicas
with the world standard at periodic intervals. On
October 14, 1960, the General Conference changed
the standard of length to an atomic constant, namely,
the wavelength of the orange-red light emitted by the
individual atoms of krypton-86 in a tube filled with
krypton gas in which an electrical discharge is main-

Table 1-1 STANDARDS AND UNITS AS OF 1969

Standard Measuring Unit
device
Length Wavelength of  Optical 1 meter =
orange-red light interferometer 1,650,763.73
from krypton-86 wavelengths
Mass  Platinum-iridium Equal-arm 1 kilogram
cylinder, 1 balance
kilogram
Time  Periodic time Atomic clock 1 second =
associated with a 9,192,631,770
transition be- cesium
tween two periods
energy levels of
cesium-133
atom

-1-2

Movable
mirror, M,

Combensator L
Beam plate

splittersg

mirror, M,

(b)

tained. Such a standard is much more readily repro-
ducible than one based on a specific material object.

The standard of mass is the mass of a cylinder of
platinum-iridium, designated as one kilogram and
kept at the Intsrnational Bureau of Weights and
Measures at Sévres, near Paris.

Before 1960, the standard of time was the interval
of time between successive appearances of the sun
overhead, averaged over a year, and called the mean
solar day. Between 1960 and 1967 it was changed to
the tropical year 1900, that is, the time it took the sun
to move from a certain point in the heavens, known
as the vernal equinox, back to the same point in 1900.
In October 1967, the standard was changed again to
the periodic time of the radiation corresponding to the
transition between the two hyperfine energy levels of the
fundamental state of the atom of cesium-133. '

The three standards are listed in Table 1-1.

After the choice of a standard, the next step is to
decide upon an instrument and a technique for
comparing the standard with an unknown. Consider,
for example, the distance x between two mirrors, A
and B, of the device called an etalen, shown in Fig.
1-1(a). To find the number of wavelcngths of orange-
red light of krypton-86 in the distance x requires the
use of an optical interferometer, one type of which
(due to Michelson) is shown in Fig. 1-1(b). A mova-



Table 1-2 PREFIXES FOR POWERS OF TEN

Standards and units 3

Power of ten 107" 107 10° 107° 107 10° 10° 10° 10"
Prefix pico- nano- micro- milli- centi- kilo- mega- giga- tera-
Abbreviation p n “ m c k M G 3y

ble mirror M on the Michelson interferometer is first
made to coincide in position with A on the etalon.
Then the mirror is moved slowly until it coincides
with B, during which time gradations of orange and
black, known as interference fringes, move past the
cross hair in the field of view of a telescope and are
counted. The motion of one complete fringe corre-
sponds to a motion of mirror M of exactly one-half
wavelength. A length known as one meter is defined
in this way as:

1 meter = 1,650,763.73 wavelengths of
orange-red light of krypton-86.

The metric system of units is used exclusively in
defining the standards of mass, length, and time.
Most nations other than the United States and Great
Britain also use the metric system exclusively for
commerce and industry as well; Britain is making
long-range plans to convert to the metric system, and
many well-informed people believe it would be very
advantageous for the United States to convert. One
advantage of the metric system is that the various
units for a quantity are always related by factors of
ten. Thus, some 'units of length in common use in
science and technology are: ;

1A =10"m
(used by spectroscopists),

1 angstrom unit =

1nm = 10"°m
(used by optical designers),

1 nanometer =

1 micrometer = 1 um = 10 °m ,
(used commonly in biology),
1 millimeter = 1 mm = 10 *m and
1 centimeter = 1cm = 10 ’m
(used most often),
1 kilometer = 1 km = 10°m

(a common European unlt of distance).

LEENTS

The words ‘‘nanometer, micrometer,” and
“kilometer” are all accented on the first syllable, not-
the second, just like the words ‘“millimeter” and
“centimeter.” The prefix ‘“‘nano” is pronounced
“nanno.” A common set of prefixes is used with all
units. These and their standard abbreviations are
shown in Table 1-2. Thus,

1 kilometer = 1km = 10°meter = 10°m,
1 kilogram = 1kg = 10°grams = 107g,
1 kilowatt =1kW = 10>watts = 10°W.

It is canvenient to memorize Table 1-2, to have the
information available when needed.

Units of length used in everyday life and in
engineering in both the United States and the United
Kingdom are defined as follows:

41,929.399 wavelengths of

1inch=1in.={ )
Kr light, or exactly 2.54 cm,

1foot =11t = 12in.,
lyard = 1yd = 3 ft,
1 mile = 1 mi = 5280 ft.
The device used to subdivide the standard of

mass, the kilogram, into equal submasses is the equal-
arm balance, which will be discussed in Chapter 5.
Frequently used units of mass are:

1 microgram =1ug = 10"kg,
1 milligram =1mg = 10"°kg,
1 gram =1lg = 10" kg,
1 pound mass = 11lbm = 0.45359237 kg.



4 Composition and resolution of vectors

The clock used to define the standard time
interval is the cesium clock, a large, complex, and
expensive laboratory instrument. It is extraordinarily
precise and maintains its frequency constant to one
part in one hundred billion (10"") or better. Further-
more, it may be compared with other high-precision
clocks in an hour or so, instead of the years required

for comparison with the old astronomical standard..

In the atomic clock, a beam of cesium-133 atoms
passes through a long metal cylinder and interacts
with microwaves brought in by a wave guide from a
generator controlled by a quartz oscillator. The unit
of time used throughout the world is called the
second and is defined to be

1second = 1s

9,192,631,770 Cs periods.

Other common units of time are:

1 nanosecond = 1ns =10"s,

1 microsecond =1ps = 107%s,

1 millisecond = 1ms =107"s,

1 minute = 1 min = 60s,

1 hour = 1hr = 3600s,

1 day = l day = 86,400s.

1-3 SYMBOLS FOR PHYSICAL QUANTITIES

We shall adopt the convention that an algebraic
symbol representing a physical quantity, such as F, p,
or v, stands for both a number and a unit. For
example, F might represent a force of 10 N (where N
stands for newton), p a pressure of 15 N m~ 2, and v
a velocity of 15 ms™".

When we write
X = vot + 3at?,

if x is in meters, then the terms vot and 2at” must be

in meters also. Suppose t is in seconds. Then the units

of vo must be m s™' and those of a must be m s™>.

(The factor % is a pure number, without units.) The
units of vo could be written as m/s rather than m s™*,

but the negative-exponent form is usually more con-
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venient and will be used in all such expressions in
this book.

As a numerical example, let vo=10 m s a
=4 ms 2 t=10s. Then the preceding equation
would be written

x=(10mg ") (10§ +2-(4mg)-(109)°

The units are treated like algebraic symbols. The
s’s cancel in the first term and the s*’s in the second,
and

x = 100 m + 200 m = 300 m.

The beginning student will do well to include the
units of all physical quantities, as well as their
magnitudes, in all his calculations. This will be done
consistently in the numerical examples throughout
this book.

1-4 FORCE

Mechanics is the branch of physics which deals with
the motion of material bodies and with the forces
that bring about the motion. We shall postpone a
discussion of motion until Chapter 4, and start with
a study of forces.

When we push or pull on a body, we are said to
exert a force on it. Forces can also be exerted by
inanimate objects: a stretched spring exerts forces on
the bodies to which its ends are attached; com-
pressed air exerts a force on the walls of its contain-
er; a locomotive exerts a force on the train it is
pulling or pushing. The force of which we are most
aware in our daily lives is the force of gravitational
attraction exerted on every physical body by the
earth, called the weight of the body. Gravitational
forces (and electrical and magnetic forces also) can
act through empty space without contact. A force on
an object resulting from direct contact with another
object is called a contact force; viewed on an atomic
scale, contact forces arise chiefly from electrical
attraction and repulsion of the electrons and nuclei
making up the atoms of material.

To describe a force, we need to describe the
direction in which it acts, as well as its magnitude,
which is a quantitative description of ‘“how much” or
“how hard” the force pushes or pulls, in terms of a



standard unit of force. In Chapter 5 we shall see how
a unit of force can be defined in terms of the units of
mass, length, and time. In the meter-kilogram-second
(mks) system, this unit is the newton, abbreviated N.
A more familiar unit is the pound, which can be
defined as the force with which the earth attracts a
. standard body (i.e., its weight) with a mass of 1
pound-mass as defined in Section 1-2. A particular
location on the earth’s surface must be specified,
since the attraction of the earth for a given body
varies by as much as 0.5% from one point to another.
If great precision is not required, it suffices to take
any point at sea level and 45° latitude.

In order for ah unknown force to be compared
with the force unit and thereby measured, some
observable effect produced by a force must be used.
‘One such effect is to alter the dimensions or shape of
a body on which the force is exerted; another is to
alter the state of motion of the body. Both of these
effects can be used in the measurement of forces. In
this chapter we shall consider only the former; the
latter will be discussed in Chapter 5.

~ An instrument commonly used to measure forc-
es is the spring balance, which consists of a coil
spring enclosed in a case for protection and carrying
at one end a pointer that moves over a scale. A force”
exerted on the balance changes the length of the
spring, and the change can be.read on the scale. The
balance can be calibrated as follows. The standard
pound is first suspended from the balance at sea level
and 45° latitude and the position of the pointer is
marked 1 1b. Any number of duplicates of the
standard can then be prepared by suspending a body
from the balance and adding or removing material
until the index again stands at 1 Ib. Then when two,
three, or more of these are suspended simultaneously
from the balance, the force stretching it is 2 Ib, 3 1b,
etc., and the corresponding positions of the pointer
can be labeled 2 Ib, 3 Ib, etc. This procedure makes
no assumption about the elastic properties of the
spring except that the force exerted on it is always
the same when the pointer stands at the same posi-
tion. The calibrated balance can then be used to
measure the magnitude of an unknown force. An
analogous procedure can be used to calibrate a
spring balance in newtons

Graphical representation of torées._-Yectors -

Fig. 1-2

1-5 GRAPHICAL REPRESENTATION OF FORCES.
VECTORS

Suppose we are to slide a box along the floor by
pulling it with a string or pushing it with a stick, as
in Fig. 1-2. That is, we are to slide it by exerting a

_ force on it. The point of view which we now adopt is

that the motion of the box is caused not by the
objects which push or pull on it, but by the forces
which these exert. For concreteness, assume the
magnitude of the push or pull to be 10 N. To write
“10 N” on the diagram would not completely de-
scribe the force, since it would not indicate the
direction in which the force acts. One might write “10 '
N, 30° above horizontal to the right,” or “10 N, 45°
below horizontal to the right,” but all the above
information may be conveyed more briefly if we
adopt the convention of representing a force by an
arrow. The length of the arrow, tq some chosen scale,
indicates the size or magnitude of the force, and the
direction in which the. arrow points indicates the
direction of the force. Thus, Fig. 1-3 is the force
diagram corresponding to Fig. 1-2. (There are other
forces acting on the: box, but these are not shown in
the figure.) :

(a) (b)

Fig. 1-3



6  Composition and resolution of vectors

Force is not the only physical quantity which
requires the specification of a direction in space as
well as a magnitude. For example, the velocity of an
aircraft is not completely specified by stating that it
is 300 miles per hour; we need to know the direction
also. The concept of volume, on the other hand, has
no direction associated with it.

Quantities such as volume, which involve a
magnitude only, are called scalar quantities. Those
such as force and velocity, which involve both a
magnitude and a direction in space, are called vector
quantities. Any vector quantity can be represented by
an arrow, and this arrow is called a vector (or, if a
more specific statement is needed, a force vector or a
velocity vector).

Some vector quantities, of which force is one,,

are not completely specified by their magnitude and
direction alone. Thus, the effect of a force depends
also on its line of action and its point of application.
(The line of action is a line of indefinite length, of
which the force vector is a segment.) For example, if
one is pushing horizontally against a door, the effec-
tiveness of a force of given magnitude and direction
depends on the perpendicular distance of its line of
action from the hinges. If a body is deformable, as all
are to some extent, the deformation depends upon
the point of application of the force. However, since
many actual objects are deformed only very slightly
by the forces acting on them, we shall assume for the
present that all objects considered are perfectly rigid.
The point of application of a given force acting on a
rigid boedy may be transferred to any other point on
the line of action without altering the effect of the
force. Thus a-force applied to a rigid body may be
regarded as acting anywhere along its line of action.
A vector quantity is represented by a letter in
boldface type. The same letter in ordinary type
represents the magnitude of the quantity. Thus the
magnitude of a force F is represented by F.

1-6

A
B
.
Fig. 1-4 The vectors A, B, and C are mathematically equal.

1-6 VECTOR ADDITION. RESULTANT OF A SET OF
FORCES

Two vector quantities are said to be equal if they
have the same magnitude and direction. In Fig. 1-4
the vectors A, B, and C, which may represent physi-
cal quantities, are all equal, and we may write
symbolically

A=B=C

Two vector quantities which are equal need not have
the same physical effect. For example, as already
pointed out, two forces with the same magnitude and
direction may have different points of application,
and a complete description must include the point of
application in addition to the magnitude and direc-
tion. Thus vector equality has a rather specialized
meaning, and in this text boldface “‘equals” signs will
be used as a reminder of this meaning.

The vector sum of two vector quantities is de-
fined as follows. Let A and B in Fig. 1-5(a) be two
given vectors. Draw the vectors as in (b) at any
convenient point, with the initial point of B at the
endpoint of A. The vector sum C is then defined as
the vector from the initial point of A to the endpoint
of B. This relationship may be expressed symbolical-
ly as:

C=A+B.

Clearly, vector addition is not the same opera-
tion as addition of ordinary numbers; in this book a

C=B+4

Fig. 1-5 Vector C is the vector sum of vectors
(c) AandB.C=A+B =B+ A.



