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FOREWORD

The present volume constitutes what may justifiably be called
the “proceedings” of the Topology Conference which was held at
the University of Michigan, June 24-July 6, 1940. According to
the original plan, the Conference was to have been international in
scope, with leaders in the field frcm several countries participating.
Later it became evident that the changing world situation would
make such participation impossible. Fortunately the develop-
ment of topological research in this country has been of such a
character that the resulting limitation in personnel did not neces-
sitate restriction in the subject matter of the program. Therefore
the publication in full herewith of the twelve principal lectures of
the Conference, together with summaries of the shorter papers,
may be regarded as a survey of the present status of topology in its
‘various phases.

The editors wish to seize this opportunity to express, not only
for themselves but on behalf of all those who attended the Con-
ference, their grateful appreciation to the administrators of the
Alexander Ziwet Fund whose: generous financial assistance made
the Conference possible; the Horace H. Rackham School of Gradu-
ate Studies of the University of Michigan and Dean Clarence S.
Yoakum, not only for constant encouragement but for graciously
welcoming the members of the Conference and providing com-
fortable physical facilities for the meetings; Director Louis A.
Hopkins of the Summer Session for aid in arrangements; and the
University of Michigan Press and, more specifically, Drs. Frank E.
Robbins and Eugene S. McCartney for giving s¢ generously of
their editorial assistance and counsel.

R.L. W,
W. L. A,
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ABSTRACT COMPLEXES
By SOLOMON LEFSCHETZ

1. Introduction. The starting point of Poincaré, the true
creator of the theory of complexes, was the assignment to pairs of
faces of consecutive dimensions in a polyhedron ][] of certain
incidence numbers depending upon their geometric incidences and
relative orientations. From the combinatorial systems thus aris-
ing he was able to extract certain fundamental integers, the Bett:
numbers and torsion coefficients, which turned out to be topological
invariants of [] (surmise by Poincaré, proof by Alexander and
Veblen).

In Poincaré’s own work complexes were always of the more
restricted type—the manifolds. Furthermore, for him a complex
was always a polyhedron. Endeavors followed, however, to ob-
tain an abstract system with more or less similar properties.
Thus there arose different kinds of abstract complexes, and they
fall essentially into three categories:

A. Abstract complexes in the sense of Dehn-Heegaard (related
types of M. H. A. Newman and J. W. Alexander). The motivation
is found in the following still unsolved question, which goes back
(in some form) to Poincaré: When two polyhedra 1], ]’ are
topologically equivalent do they or do they not have isomorphic
subdivisions? This brings to the fore the operation of subdivision
and similar operations on the faces. In this type of complex, then,
certain a priori operations of this nature are postuiated, and the
complexes are investigated with respect to equivalence under
them. The theory thus obtained is strongly “loaded” on the
geometric side, and for that reason has not as yet been very widely
~ developed.
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B. Abstract complexes in the sense of W. Mayer. Here we find
the opposite extreme; only the purely group-theoretic features are
preserved. This type has been systematically developed (up to a
point) by its originator, and perhaps deserves much fuller atten-
tion. A variant has recently been considered by A. W. Tucker,
who reduced a (finite) complex to a pair of matrices subjected to
certain simple relations.

C. Abstract complexes in the sense of A. W. Tucker. They
occupy a middle ground between A and B in that their structure
partakes of algebra and also of geometry, which enters in through
certain order relations. This type appears to be best adapted to
the applications of present-day topology, and so it alone will be
dealt with here.

Henceforth we shall drop the term “abstract” and merely speak
of “complexes”; it is understood that they are the structures of
category C, to be defined presently.

2. Definition of complexes. A complex is a set X = {x} (by
no means always finite) whose elements are ordered (i.e. partially
ordered) with respect to a proper reflexive and transitive rela-
tion < (is a face of) and with two attached integral-valued func-
tions of the elements x and of their pairs x, x':

the dimension of x, written dim x;

and the incidence number of x, x', written [x:x’], under the
following conditions:

I. ¥’ < x implies dim x’ £ dim x;
I1. [x:x'] = [#':x];

III. [x:%'] £ 0 implies x < x’ or x’ <x and also
|dim x — dim x’| = 1;

IV. Tiiven x, x’’ such that [dim x — dim x”) = 2, there are
at most a finite number of x’ such that [x:x’][x":x""] % 0 and
doafx:x’][e’ 2] = 0.

The dimension of X itsel” written dim X, is the largest number
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dim x forxe X. If dim X = # is finite, X is sometimes called an
n-complex.

As a matter of fact, a certain latitude must be allowed in the
incidence numbers. Let a(x) be a function whose value is + 1.
Then if X, with the assigned numbers [x: x’], is a complex, it re-
mains one when they are replaced by [x:x']i = a(®)a(x’)[x: x'].
We agree to consider the new complex the same as the old. Thus
the numbers [x:x’] are defined only up to a factor a(x)a(x’).
The function a(x) is known as an orientation funcition; the passage
from [x: x’] to [x: x'], is described as reorienting X.

Isomorphism, weak isomorphism. 1f X = {x}, ¥ = {y| are
two complexes and there is a one-one correspondence x <> y pre-
serving <, dim %, [x:x’] (up to a product a(x)a(x’)), the trans-
formation ¢: X — Y is said to be isomorphic. If the situation is
the same but dim y = dim x + &, then [ is said to be weakly '
isomorphic.

Let us introduce for each x a new element x* and introduce
in X* = {x*} the following relations: x* < x'* whenever x’ < x;
dim 2* = — dim x; [x*:x*] = [x:x’]. The basic conditions
1-1V being still verified, X* is a complex, the dual of X. We find
at once X** o~ X, so that X, X* are =~ the dual of one another.
Notice that the symmetry in the relationship has been made possi-
ble only through the admission of negative dimensions.

Suppose that X is n-dimensional and contains no negative di-
mensional elements. Let X = {#} be a weak isomorph of X*
with dimensions raised by #. The resulting X, the reciprocal
of X, is a complex whose dimension = 7 and likewise such that

dim # = 0. In many cases X may advantageously replace X*.
In the earlier theory of manifolds it was to X that the term “dual!”
was always applied. *

Notations. The elements of X will be written x7;, where
p = dim x. The elements (x?;)* of X* will be written x%,. Thus

if the dimensional index p is a subscript the dimension is — p.
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The summation convention reilative to repested non-dimensional
indices will be adopted throughout.

Star, closure, subcomplexes. Returning to the initial complex
X, we have two fur}damental functions of the elements:

St x, the star of x, defined by St x = {x’|x < x'};
Cl x, the closure of x; defined by Cl x = {x’|x' < x}

Another convenient function is Bx, the boundary of x, defined by
Bx =Clx — x.

A complex X is star-finite (ciosure-finite) whenever every
St x (Cl x) is finite. When X is both star- and closure-finite it is
said to be loc:ally finite. These are actually the only three types of
infinite complexes that occur in the applications (probably because
in the absence of suitable methods of attack the others are studi-
cusly avoided).

The functions St, Cl are also defined for a subset X4 of X;
St X, (Cl X ) is the union of the stars (closures) of all the elements |
of X,.

Subcomplexes. A subcomplex ¥V of X is a subset which under
the order relations, dimensions, and incidence numbers already
existing in X, is also a complex. We say that Y is a closed sub-
complex if CI ¥ = V; that it is an open subcomplex if St ¥V = V.
If Yisa closed (open) subcomplex of X, then Y*is an open (closed)
subcomplex of X*. The effect of this dualism will be perceived
later.

Before going further it will be profitable to examine some of
the more important types of complexes occurring in topology.

3. Simplicial complexes. A p-simplex o? is any set of p + 1
objects {Ao, cee, A,,}. The A; are the vertices of o?. The
o? C o” are the g-faces of o7 (proper faces when ¢ < p). If the
vertices of ¢¢ and ¢" are distinct, and if together they comprise
those of o, we will write 6? = g%7". To orient o” is to assign to its
vertices an order modulo an even permutation. If the order is
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Ao, - -+, A, wealso write 0?» = Ag - - - A,. Suppose that g?, g7~
ordered are such that with suitably labeled vertices g7 = A.0¥ .
We then say that ¢?, o»~! are positively related; otherwise that
they are megatively related. The dimension of o7, written dim o7,
is p. The set of proper faces of o?, written Bo?, is the boundary
of a?.

A simplicial complex is a complex K whose elements {a} are
simplexes such that if o € K every face of o also € K and, moreover:
(a) < means “is a face of ”; (b) dim o? = p; (¢) if »~! < 0% and
they are positively related, then [o7:g7~!] = [o7':i0?] = 1; if
they are negatively related the same incidence numbers are — 1;
all the other [ : ] are zero. Conditions I, II, III hold, and
1V is readily verified. K is closure-finite.

A closed subcomplex of K is a simplicial complex; an open
subcomplex of K is a complex known as an open simplicial complex
(it may be defined directly without the use of K). By contrast a
simplicial complex is sometimes called a closed simplicial complex.
As an example, o together with all its faces is a closed simplicial
complex, written 7; similarly Bo?; hence ¢? = 7 — Bo” is an
open simplicial complex.

Derived complex. Given any complex (not necessarily sim-
plicial) X = {x}, take as simplexes all the subsets x’ = x; - - - x,
such that #; < - - - < x,. Then X’ = {x'} is a simplicial com-
plex known as the first derived of X. By repetition we have the
successive derived X'/, - - -, X® ...

Euclidean complex. Let K = {a} be as before and let {4.}
be its vertices (the ¢°). Choose for each 4, a real parameter
%210 < x, £ 1. Define now a point x as a set {x,} such that:
(@) all but a finite number of the x, are zero; (b) > xa = 1; (c) if
Bagy * * ¥ 5 %, are the %: % 0, then 0? = A,, - - - Aa, e K. Adopt
for {x} a euclidean metric. The aggregate of all points under (c)
is called a euclidean p-simplex, written o%. The order, dimension,

and incidence relations existing in K are extended to K. = {o%}.



6 " SOLOMON LEFSCHETZ

It is thus a metric space partitioned into euclidean simplexes
making up a complex isomorphic with K. We call K, a cuclidean
complex. The term is then extended to a coliection Ki, = {01}
such that there exists a topological mapping T : K, — K., which
is affine on each o..

Let ¢, be a point of o,. Construct an isomorph K/ of the
first derived, K’, such that &, corresponds to the vertex ¢ of K’.
There results a decomposition of K. into a new euclidean complex
K. called a derived of K,. Similarly, one may obtain K}/, - - -
Generally the &, are chosen as the centroids of the g., and the
derived are then said to be barycentric.

Geometric complex. Let K, be locally finite and let T be a
topological transformation applied to K,. The To, = { are called
geomelric simplexes. The “K,relations” are extended to K, = {f},
and the complex thus arising (still isomorphic with K and also
with K,) is said to be a geometric complex.

With the K type we already have access to more colorful
examples. For any “smooth” surface ) decomposed into curvi-
linear triangles such that no two triangles or edges have the same
vertices is easily identified with a two-dimensional K. The sur-
face Y need not be closed, and may have a boundary. The one-
dimensional geometric complexes are known as graphs; it is with
graphs that the earliest topological research was chiefly concerned.

In topology an impertant roéle is played by a complex intro-
duced by Vietoris and made the basis of his homology theory.
The complex K cousists of all the simplexes whose vertices are the
points of a compact metric space R. It is closure-finite, but is
not star-finite unless the space R reduces to a finite set. Note-
worthy also are the regular complexes which we have found,
for instance, convenient in connection with local connectedness.
Such a complex is a countable locally finite subcomplex L = {a,,}
of K such that diam ¢, — 0; L may also be regular with re-
spect to a given closed and bounded subset A of R; then



ABSTRACT COMPLEXES 7

sup {diam Crny d(@n, A)} — 0. These complexes have received in-
teresting recent applications at the hands of Sicenrod (see his
lecture, pp. 43-55) and Eilenberg.

4. Polyhedra. It will be remembered that an #-cell ic a point
for » = 0, and for n > 0 the topological image of the euclidean
region a3 + -+ - + a3 < 1. A convex polyhedral z-cell w® is a
point for n = 0, and for » > 0 a bounded convex region in a
euclidean n-space €7, whose boundary consists of a finite set of o,
r < n. A polyhedron]] is a metric space partitioned into disjoint
convex polyhedral cells whose set {w}} has the property that
@ — wj is a finite number of w?, p < n, which are also in the set.
The polyhedron will now be made a complex, as follows: The order
relation, <, signifies “is a face of”; and dim ] = n. The in-

cidence numbers [w}:w]™!

] are determined thus: In the space
€ of wf choose a system of cosrdinates «f, - - -, x,. ~Then, if
w} ™! is nota face of wi,set {op: W' =0. If W' < o}, applya
euclidean transformation of codrdinates in €7, bringing the hrst
n — 1 covrdinates in coincidence with «J, - - - , x%_;, and the last so
that «? is in the region x, > 0. If a (= £ 1) is the determinant
of the transformation we define [w} : ] '] = a. The rest of the
[ : ] are determined to accord with II, I1I. Thus I, IT, TI1
are fulfilled, IV is readily verified, and so ] is a complex.

The process utilized for constructing an isomorph of tho de-
rived of euclidean complexes may be applied to I1. itis, in fzet,
the euclidean complexes thus arising which are usually meant by
the derived [ ]/, J1"", etc. Furthermore, in general they are taken
as'barycentric (in the obvious sense).

We need not mention the familiar polyhedra of elementary
geometry. " A noteworthy polyhedron arises as follow:-T.et 4 be a
closed and bounded subset of the euclidean spuce £ and consider
the rcticulation Ri cut out by all the subspaces x; = i7", «wlere
the m; take the values0, + 1, - - - . ;,et {wk;} be the clemonts of

et
Tha

R; and S; be the set of all the w;; whose ciusures meei 4.
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wii1,; C Sy make up aset Sy . Then the union of Ry — So, S¢ — S,
SY =Sy - -+ is a polyhedron [ | of dimension # which covers £*—A4
and which may be utilized to great advantage in topology. Of
course, [ [’ is a euclidean complex fulfilling the same réle. Notice
that [], ]I’ are regular with respect to 4 in a sense analogous to
that of No. 3: if [] = {w,}, then sup {diam w,, d(4, w,)} — 0.

5. Cellular complexes. These complexes, when finite, were
investigated by Veblen. The description of a cellular complex
K = {E}‘} is the same as for a polyhedron, save that the cells are
unrestricted and, in addition, E} is topologically equivalent to a
euclidean closed spherical region, %} 4+ - - - 4 a2 < 1, and this
under a topological mapping f; which sends E} — E} into the
sphere S;7':a2 + - - - 4+ a2 = 1. A definite mapping is chosen
for each E, and a “relative orientation” of Ef and E}™' < E}
selected by reference to the images in €#, after a manner more or
less patterned upon the process for a polyhedron. The relative
orientation may be characterized by + 1, and thus serve to de-
termine the incidence numbers. The ordering and dimensions are
introduced as before, and I-1V are readily verified. Thus K is a
complex in the sense of our definition.

6. Products of complexes. Productsare devices for construct-
ing new complexes out of given complexes. It will be sufficient
to consider the product of two complexes: X = {x}, ¥ = {y].
The elements of the new complex are the pairs (x, y) of the car-
tesian product of the two sets of elements and are designated by
.x X y. The order relations are governed by x X y < x’ X y’
wheneverx < x’andy < y’. Wesetdimx X y = dim x + dim y,
and finally define

[ X yio' X 3] = [2:2],
[# X yix X y'] = (= Diim=[y:y],

which, by imposing No. 2, II, III, suffices to determine all the
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incidence numbers. The verification of No. 2, IV is elementary,
and so {x X y!} is a complex designated by X X ¥, the product of
X and Y. Many properties are quickly derived from the defini-
tion. We merely state:

I. (X FPFes X* X ¥
II. When X N ¥V =0, ¥ X X is merely X X Y reoriented by
the factor a(x X y) = (— 1)dim =z dim v,

III. The product K X L of two simplicial complexes K, L is
not a simplicial complex. The product [[; X []: of two poly-
hedra is a polyhedron. Furthermore, as a space, [ [1 X ]]: is the
topological product of the spaces []1, ] ..

7. Homology theory. The basic structure of a complex, par-
ticularly through No. 2, IV, provides the means for a wide appli-
cation of algebraic methods. In discussing the resulting theory
we shall follow the group-theoretic approach, which is basically
due to E. Noether and which Poutrjagin’s classical discoveries
have made indispensable. We shall fully discuss finite complexes
and give indications on the infinite case later. N

Suppose, then, X finite. Take any additive topological group
G = {g} and form the expressions C? = gix?, gie G, known as the
p-chains over G. The set °*(X, G) = {C?} is an additive topo-
logical group, the direct product of «” isomorphs of G, where a? is
the number of elements x{. Introduce now a (p — 1)-chain

Fx; = > [xf: x:?—l]x?_1

and define FC? by linearity. This makes F a simultaneous homo-
morphism (??(X, G) — (°»~'(X, G). The operator F is continu-
ous and known as the boundary operator. It is a general operator
defined for all complexes, very much as the differentiation operator
d is defined for all differentiable functions. The chain FC? is
called the boundary of C», and F» = { FCr+'} is a subgroup of
(C»(X, G), whose elements are called the bounding p-chains over G.
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#

The p-chains mapped by F into zero (i.e. whose boundary is zero)
are the p-cycles over G. Topologically speaking, G and hence
(?(X, G) are Hausdorff spaces. Therefore the p-cycles make up a
closed subgroup Z7(X, G) of (®*(X, G), the group of the p-cycles
over G. The basic axiom IV is immediately seen to be equivaleni
to the operator relation :

FF = 0,

or else to: every boundary is a cycle, or, again, to: ¥ is a subgroup
of Zr. ,

If G were discrete and likewise the groups (%, Z, ¥ we would
now follow Poincaré and take the factor group Z/¥. There are,
however, strong reasons for requiring of topological groups that
they be Hausdorff spaces; unfortunately, if, say, G, H are such
groups with H a subgroup of G, the factor group G/H may fail
to be a Hausdorff space when H is not closed in G. For this reason
we take the closure 72 (in (7), and since F» C Z7 and the latter is
closed, we also have 7» C Z7». One may now safely introduce the
factor group

%x*(X, G) = Z*(X, G)/F*(X, G),

known as the pth homology group over G. The importance of the
homology groups will become clear as we proceed. At the present
time it is sufficient to mention that, when X is a finite geometric
complex and is transformed topologically into a similar complex X,
the two have the same homology groups. That is to say, the ho-
mology groups are topological invariants. Thus a purely “alge-
braic” scheme leads to the discovery of such invariants. As we
shall indicate at the end (No. 19, I), this scheme is so far-reaching
that it may be applied even to general topological spaces. Notice
that X, X, above need not look at all alike. Thus the surfaces
of the cube and of the octahedron are very distinct complexes

(polyhedra), but being topologically equivalent they have the same
homology groups.



ABSTRACT COMFLEXES 11

If the cycles v?, ¥'? are in the same homology class I'? (the same
element of 3¢?(X, G)), we express the fact, with Poincaré, by a
homology, ¥* ~ v'?, and say that v?, ~'? are homologous.

When X is infinite one may always consider finite chains, but
" their groups are to be taken as discrete throughout. Infinite
chains over topological groups may be freely introduced only when
X is star-finite. The groups @, Z, 7, 3C are then defined as before.

To illustrate the concepts introduced in the light of more
familiar notions, take a geometric complex K = {¢t}. A one-
chain gt} may be thought of as a path made up of “weighted”
arcs (t'he ¢); a one-cycle corresponds rather nicely to the closed
paths; a bounding one-cycle, to the paths which may be shrunk to
points by a special kind of deformation in which one allows for
canceling adjacent but oppositely oriented paths.

As a second example take a triangulated smooth closed sur-
faceY.. All the two-cycles are simply multiples of the sum of the
triangles suitably oriented, that is to say, in a certain sense multi-
ples of ) itself. Again we see “cycle” associated with the absence
of boundary. If Z were in €3 it could be shrunk to a point, and
its cycles would in fact all be bounding. Thus “bounding” may
suggest “shrinking down to points.”

8. Coefficient groups. We have admitted fully general coef-
ficient groups. In point of fact Poincaré considered only G = the
group 3 of the integers, giving rise to integral chains, etc. Tietze
introduced the group 3, of the residues mod 2; J. W. Alexander,
the group 3, of the residues mod m; Lefschetz, the rational group
R and, finally, Pontrjagin, the general topological group G. The
most important among the last is the group ® of the real numbers
mod 1. Among the more special categories a noteworthy one
consists of Steenrod’s division-closure groups. T :y are character-
ized by the following property: The subgroup G(m) of the ele-
ments of the form mg is closed for every m. The class includes
the discrete and the compact groups, and hence the groups Jm
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(which are finite and therefore compact). For such groups and X
finite 7» = ¥», and so de» = Z7/F».

Universal groups. Suppose that we consider groups 3C? of a
certain type. If Gy is such that, when the groups 3C? over G, are
known, so are those over every G, then G, is said to be a universal
group for the type in question. It is known that both 3 and P
are universal for a finite X (Pontrjagin), that J is universal for a
closure-finite X and finite cycles (Cech), and P for a star-finite X
and infinite cycles (Steenrod).

Let us return to the sitvation envisioned by Poincaré: X finite
and G = J the group of the integers. The study of the groups
¢, Z, 7, 3 reduces, then, to a well-known problem on groups with a
finite number of generators, and it is found that

o’ =8"X TI X - X T,

where B? is a free group on, say, R? generators and T a cyclic
group of finite order ] such that /§_, divides #{. The number R*
is the pth Betti number of X, and the ] are its pth torsion coef-
Sficients. :

On group-theoretical grounds a reasonable extension of the
Betti numbers is this: Suppose G = J a field; then 3?(X, J) is a
vector space over J, and its dimension is by definition the pth
Betti number over J, written R?(X, J). In practically all cases
where such a number may be at all defined we have recently shown
that it is the same for all groups of equal characteristic 7 (zero or
a prime), and so it is the same for J and for 3,. For this reason
the Betti numbers may as well be written R?(X, w). For the
claracteristic 7 = 0 the Betti number is the same as for the
rational field, and it is in fact the number R?(X) already defined
for the group of the integers. ’

For a geometric complex K the numbers R*(K, 7) are all equal,
and their common value R? is the number of connected pieces of K.
This is the source of the early designations, connectivity indices or
connectivities, given to the Betti numbers.
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Returning to the general finite complex X we shall again let
a? denote the number of x{e¢X. We then have the Euler-
Poincaré relation '

(1) x(X) = X (= 1)?a? = 3 (— 1)?R*(X, ).

The expression x(X), which is thus independent of the char-
acteristic 7, is known as the Euler-Poincaré characteristic of X. It
is very convenient for calculating the Betti numbers for low di-
mensions. Thus for the surface of genus p, 2, we find R® = 1,
R? = 1. An actual count shows that x(3_,) = 2 — 2p, and so
R! = 2p.

9. Absolute and relative theory. Let X; be a closed subcom-
plex of X and X, = X — X, its open complement. We call
(X, X1) a dissection of X. As we have seen, both X, X; are com-
plexes under the same assignment of <, dimension, [ 2 Jias
in X. Let us designate (temporarily) by F; the boundary oper-
ator of X;. Itis readily found that F, = F (F takes the same
values as F on X,), while Fy = F mod F; (i.e. neglecting elements
in Fy). As a consequence, if C? is a cycle of X it is also a cycie
of X, while on the contrary a cycle of X, need not be a cycle of X
itself. For this reason the cycles of X, are termed relative cycles
or, more precisely, cycles of X mod X;. By contrast the cycles of
X itself are called absolute cycles. The terms “absolute” and
“relative” always refer to some complex X, which at the moment
is the “universe of discourse” for all chains. Appropriate designa-
tions for the relative groups are: Z?(X, X)), Z°(X, X1, G), - - - .
The Euler-Poincaré relation (1) subsists with a? the number of
x; € Xo, and with the numbers R?(X, X, w) at the right.

It is worthy of note that the “relativization” which obtains
here is well in line with the familiar relativization of topology.
Thus let K be a geometric complex with the dissection (Lo, L).
The number R*(K, L) is, this time, the number of connected pieces
which do not meet L;. A cycle of Ly (cycle mod L,)is a chain



