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Principles of Gas—Solid Flows

Gas—solid flows are involved in numerous industrial processes and occur in vari-
ous natural phenomena. This authoritative book addresses the fundamental princi-
ples that govern gas—solid flows and the application of these principles to various
gas—solid flow systems.

The book is arranged in two parts: Part I deals with basic relationships and
phenomena, including particle size and properties, collision mechanics of solids,
momentum transfer and charge transfer, heat and mass transfer, basic equations,
and intrinsic phenomena in gas—solid flows. Part II discusses the characteristics of
selected gas—solid flow systems such as gas—solid separators, hopper and standpipe
flows, dense-phase fluidized beds, circulating fluidized beds, pneumatic conveying
systems, and heat and mass transfer in fluidization systems.

As a comprehensive information source on gas—solid flows, this text will be
useful to a broad range of engineers and applied scientists —chemical, mechanical,
agricultural, civil, environmental, aeronautical, and materials engineers, as well
as atmospheric and meteorological scientists.
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Preface

Gas—solid flows are involved in numerous industrial processes and occur in various
natural phenomena. For example, in solid fuel combustion, gas—solid flows are involved
in pulverized coal combustion, solid waste incineration, and rocket propellant combustion.
Gas—solid flows are encountered in pneumatic conveying of particulates commonly used
in pharmaceutical, food, coal, and mineral powder processing. Fluidization is a common
gas—solid flow operation with numerous important applications such as catalytic cracking
of intermediate hydrocarbons, and Fischer-Tropsch synthesis for chemicals and liquid fuel
production. Gas—solid flows occur in gas—particle separations, as exemplified by cyclones,
electrostatic precipitators, gravity settling, and filtration operations. Fine powder—gas flows
are closely associated with material processing, as in chemical vapor deposition for ceramics
and silicon production, plasma coating, and xerography. In heat transfer applications, gas—
solid flows are involved in nuclear reactor cooling and solar energy transport using graphite
suspension flows. Solid dispersion flows are common in pigment sprays, dust explosions and
settlement, and nozzle flows. The natural phenomena accompanied by gas—solid flows are
typified by sand storms, moving sand dunes, aerodynamic ablation, and cosmic dusts. The
optimum design of the industrial processes and accurate account of the natural phenomena
that involve gas—solid flows as exemplified previously require a thorough knowledge of the
principles governing these flows.

This book is intended to address basic principles and fundamental phenomena associated
with gas—solid flows, as well as characteristics of selected gas—solid flow systems. It
covers the typical range of particle sizes of interest to gas—solid flows, i.e, 1 um-10
cm, recognizing that flow characteristics for submicrometer particles are also of great
industrial importance. The book features a systematic account of important theories or
models concerning particle mechanics as well as fluid dynamics from their origins of the
development. The physical interpretation and limitations in application of these theories
or models are emphasized. Various intrinsic phenomena underlying the gas—solid flow
systems are also illustrated. The book is aimed as a textbook for seniors and graduate
students who are interested in general or specific topics of gas—solid flows. In addition,
it can be used as a reference for researchers and practitioners who are interested in the
general field of multiphase flow. It is written with multidisciplinary engineering readers in
mind. Specifically, it will be of benefit to chemical and mechanical engineering readers as
well as readers in other engineering disciplines, including agricultural, civil, environmental,
pharmaceutical, aeronautical, mining, and atmospheric and meteorological sciences.

The book contains two parts; each part comprises six chapters. Part I deals with basic
relationships and phenomena of gas—solid flows while Part II is concerned with the char-
acteristics of selected gas—solid flow systems. Specifically, the geometric features (size
and size distributions) and material properties of particles are presented in Chapter 1. Basic
particle sizing techniques associated with various definitions of equivalent diameters of
particles are also included in the chapter. In Chapter 2, the collisional mechanics of solids,
based primarily on elastic deformation theories, is introduced. The contact time, area, and
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xvi Preface

force of colliding particles are discussed using theories of elastic collision, which are im-
portant to the formulation of the momentum, heat, and charge transfer processes involving
collisions of solids. Chapter 3 is devoted to the momentum and charge transfer of gas—solid
flows. Various forces in gas—solid flows due to gas—particle interactions, particle—particle
interactions, and external fields are delineated. Equations for single-particle motion, based
on a force balance analysis, are derived. Basic mechanisms of charge generation in gas—
solid flows are also introduced in the chapter, along with a detailed discussion of charge
transfer mechanism by particle collisions. Chapter 4 deals with fundamental concepts and
theories of heat and mass transfer in gas—solid flows. Highlights include thermal radiation
of the particulate phase and heat conduction in collisions of elastic particles. Chapter 5
presents four basic modeling approaches of gas—solid flows, namely, continuum modeling
of multiphase flows or multifluid modeling, trajectory modeling, kinetic theory model-
ing for collision-dominated dense suspensions, and the Ergun equation for flow through a
packed bed of particles. In this chapter, the hydrodynamic equations of single-phase flows
are first discussed. Here, basic concepts of kinetic theory of gas and turbulence models are
introduced as a preamble to discussion of these basic modeling approaches. In contrast to
the k—e turbulence model for single-phase flows, the k—e—k, model is introduced with
the continuum approach of gas—solid flows to account for gas—solid turbulence interac-
tions. Chapter 6 focuses on the discussion of intrinsic phenomena in gas—solid flows, such
as erosion and attrition, acoustic wave and shock wave propagation through a gas—solid
suspension flow, thermodynamic properties of a gas—solid mixture, flow instability, and
gas—solid turbulence interactions.

Chapter 7 is concerned with gas—solid separations. The basic separation methods intro-
duced in this chapter include cyclone, filtration, electrostatic precipitation, gravity settling,
and wet scrubbing. Chapter 8 deals with hopper flows and standpipe flows, which are
commonly encountered in the bulk solids handling and transport processes. In order to
understand the fundamental hopper and standpipe flow characteristics, some basic con-
cepts of powder mechanics are illustrated. Chapter 9 introduces the general concept of gas
fluidization. Specifically, the chapter addresses dense-phase fluidization, which represents
a gas—particle operation of enormous industrial importance. Various operating regimes
including particulate fluidization, bubbling/slugging fluidization, and turbulent fluidization
are discussed along with spouting. The fundamental properties of bubble, cloud, and wake
and the intrinsic bubble coalescence and breakup and particle entrainment phenomena are
illustrated. Chapter 10 continues the discussion of fluidization under higher-velocity con-
ditions which are characterized by fast fluidization. Fast fluidization is conducted in a
riser of a circulating fluidized bed system where solid particles are circulating in a loop.
This chapter illustrates the interactive relationship of gas—solid flows in a loop situation
by considering the flow behavior of the individual loop components and their effects on
the overall gas—solid flow characteristics. Chapter 11 is concerned mainly with the dilute
transport or pipe flow of gas—solid suspensions. Some pertinent phenomena such as drag
reduction are discussed. Fully developed pipe flow and gas—solid flow in a bend are also
illustrated. Chapter 12 describes transport phenomena underlying heat and mass transfer
in fluidized systems. Transport models and empirical correlations are introduced to allow
heat and mass transfer properties in various fluidized systems to be quantified. An appendix
which summarizes the scalar, vector, and tensor notations presented in the text is provided.
Throughout the text, unless otherwise noted, the correlation equations presented are given
in SI units. Common notations used across the chapters such as superficial gas velocity
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and particle Reynolds number are unified. The solution manual for homework problems is
available. Interested instructors are urged to contact the publisher about it.

The book is intended to be used in various ways depending on the specific information
that the readers desire. While the material is described in a logical sequence chapter by
chapter, each chapter is presented with extensive cross-references and maintains reasonable
independence. Thus, readers who wish to have a quick grasp of a specific subject may go
directly to the relevant chapters. It is important to note that gas—solid flow is a rapidly devel-
oping field of research, and that the physical phenomena of gas—solid flows are so complex
that a comprehensive understanding of the phenomena is far from complete. Therefore, the
present text is also intended to provide readers with ample fundamental concepts to allow
them to follow through new developments in the field.

We would like to express our sincere thanks to the following colleagues who have re-
viewed the text and provided constructive suggestions and overviews: Professor R. S.
Brodkey, Professor R. Clift, Professor J. F. Davidson, Dr. R. Davis, Professor N. Epstein,
Professor J. R. Grace, Dr. K. Im, Professor B. G. Jones, Professor D. D. Joseph, Dr. C.-H.
Lin, Dr. P. Nelson, Dr. S. L. Passman, Professor R. Pfeffer, Professor M. C. Roco, Professor
S. L. Soo, Dr. B. L. Tarmy, Professor U. Tiiziin, and Professor L.-X. Zhou. We are grateful
to Dr. E. Abou-Zeida, Dr. P. Cai, Mr. S. Chauk, Dr. T. Hong, Dr. P.-]. Jiang, Professor
J. Kadambi, Dr. T. M. Knowlton, Dr. S. Kumar, Dr. R. J. Lee, and Dr. J. Zhang for their
valuable technical assistance in providing information which was incorporated in the text.
Special thanks are due to Mr. R. Agnihotri, Dr. D.-R. Bai, Dr. H.-T. Bi, Dr. A. Ghosh-
Dastidar, Mr. E.-S. Lee, Dr. S.-C. Liang, Mr. J. Lin, Mr. T, Lucht, Mr. X.-K. Luo, Dr. S.
Mahuli, Mr. J. Reese, Mr. S.-H. Wei, Dr. J. Zhang, Mr. T.-J. Zhang, and Mr. J.-P. Zhang,
who have read part of the text and have provided valuable comments. The outstanding edi-
torial assistance of Dr. T. Hong and Dr. K. M. Russ is gratefully acknowledged. Thanks are
also extended to Dr. E. Abou-Zeida and Mrs. Maysaa Barakat for their excellent drawing
of the figures. The inquisitive students in the Chemical Engineering 801 course, Gas—Solid
Flows, and the 815.15 course, Fluidization Engineering, taught by the senior author in the
Department of Chemical Engineering at the Ohio State University have provided important
feedback about the text. Their input is indeed extremely helpful. Financial assistance to this
writing project provided by the members of the Ohio State University/Industry Consortium
Program on Fluidization and Particulates Reaction Engineering, including Shell Develop-
ment Co., E. I. duPont de Nemours & Co., Hydrocarbon Research Inc., Exxon Research &
Engineering Co., Texaco Inc., and Mitsubishi Chemical Co., is deeply appreciated.
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