UML Y i) & R % il 3% A

UMLsznt 24

—

ReAL-Time UML

SECOND EDITION

DEVELOPING EFFICIENT OBJECTS
FOR EMBEDDED SYSTEMS

BRUCE POWEL DOUGLASS

i M N

WWW.Sciencep.com

UML 5 @ st & &2 AH

UML e R ZEH &

Bruce Powel Douglass 4

H 5 Rk B o
1t =

= S

AR REMEI RN T AR H 480, XERAGE R AL MR, AT E R, &
PELENAT KT L REL L UML A TREBHFR RGN, RIGELUHRET R MR
GiFI AT R E X BRI, TR, ORBRA. BAE. RS ARAT KENE
#, EEEAS TH UML &b, @8REETFZ IR Btsef], b SRRy Ak A X
RGBT N H .

AR RMEEGR, ATHHRA KRG EN R BT ITF RN A3,

English reprint copyright©2003 by Science Press and Pearson Education North Asia Limited.

Original English language title: Real-Time UML: Developing Efficient Objects for Embedded Systems,2™
Edition by Bruce Powel Douglass, Copyright©2000

ISBN 0-201-65784-8

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).
B T NRGIERIESE A CORAEep [EAAE . 1R AT BUX A 1 G XD B985 R AT .

A A5 H WA Pearson Education(354: U A H A H)BOL B thkr%s . LA E A58
F5: 01-2003-2547
& B R B (CIP) &3

UML SE i} & 4t 7 & =Real-Time UML:Developing Efficient Objects for Embedded Sysgtems/ ()
M (Douglass,B.P.) 4. —SENA. —Ibst: FlAihikiist, 2003

ISBN 7-03-011403-5

[.U... II&.. HLEESN%RIES, UML—MFRI—5%3C [V.TP312

o [A e 0 CIP Bl i 7 (2003) 5 030822 5

R\ FRE/ TR BRE
FAEEPH): SAR/H@EE: Ay ALFRLITE
4 5 2 BB
L4 SRR 16
B &ty 100717

http:// www .sciencep.com

a4 w A 7 EDR
FfLRRALRAT B o 2

*
20034E5 A% — M FFA: 787X960 1/16
2003 4F 5 AS—KEDRI EPgk: 22112
Ep¥: 1—2 000 T3 427000
Efr:38.00 7T
(U BN SR R, BRAH 5 SRR

BENRTS

B 5 1T AL 4 P R R 4R = AR R EE T B, O VS BEIEAR Y K. 28
T EALfR D [Rt Rk R, BRI 2 . O AR LA AR 1ROk B AT 24 A
PEK. 20 tH4d 60 SEACHIARAfEHLIE ANTIEREH IR B B TR L SR T &
FIAEE . TR A TEMN 60 FRZTL TR FHF TEH L, SLER 70
RGP 1% (80 AR R SEAAR S R IT & D5 ik, EL BT) XS FF & %

T [9] X5 SR B XA R 7 B R AE S M AL T A TG R AN SEAR O RIT & Vu B B L ml | & Jé
Mk, EEmsdE. B 4K, IHEFEALKARNELENER, PRI & #H A3
B 5 2R) [U SRR, EAR KRR BE B2 T 3R, X R AR & im T
FEFBOTHES, PR a3 AT & B R BAE (i, TR T T a1 X SR o sk it

20 4 80 4K 90 44k, Sefs B T L-HRbE m Xt R Mt k. Hep,
Booch, Coad/Yourdon, OMT #/ Jacobson £ J5 ¥2:45 3| T 1] 0] X S A I & R0 1Z AR S
& Pl 7 NV 22 T [% R AL S R BRARAS R AR R, BREERESAHIIR], & BHAR EMFRRE
WARE, @t 90 FAARFE I ERIRZ B FE, AMTZEEHAREIRRE T EEA A
SRR, A HAK G MRRE, # 2 BFHEH TRA S ; I E&R
ERFRWARKNZES, ARTH—PRZR SIME, EXFERT, F—@BEiES
(UML) T 90 4EA IR a4k .

UML 5= B AT =0 M X 5 5 58 %% G. Booch, J. Rumbaugh #1 1.
Jacobson A 1G4, MITAZ R il 7 K EA AR ESHES, [UML B8-S
RN EAEREE i T AT —R s, IF BRI T RRifp P ohE & M — 2 R
HIBLE . UML EA[E) BT & M RS ARSI T R MES, SR RRE,
SPB I —BOBEIRKE . 1997 4E 11 UML ¥ OMG 4SRN MARHE MBS
& . HEREE AU Al & R R 5L I ERGE S E PR

UML 7EIEE AR SCRYE SO TSR 7R R TR, LAE &R T 1 18] X 52 05 120
FAEE R R LA AR Ay 208 SO, LA E AR Had 8 S, ek anfar
15 X SR AT I & . UML ML —REBUE S HES I, MBS ¥ h—t
BAKE X . REBIEMNETEMAERCERATZIE, B EFEX 7 mBrmr s
& DAFE B 45 Fh S 5 i 0 s e 4L

M UML §R AT R, 23 TR ER, OMG HRAFIKL
B SCRAEEHE | T 3208 F 0 T RHERI AL, B E A SR EZ R P . 12 U

i UML %8 &2 %A &

TR 2R AR R A, A EE B RS, 5 SRR RS . AL &R
% . SHREG . RGNS, TJUFERYE A TRGE TR, REEHE ., JREE,
P A Ay T o 11T ELE AR AU R T LR, B nT AR R RS, Bl
T, S AR BERARE . A s L AN R SR ST AR, A

7E UML Rk A ILANRA T, BB IE T RT— MRAH R BEREER . B &k
A HY) UML2.0 JiiACK 2% UML #9 X — K E KA . Kok i) UML B nE 18 5 55K
ATPATAE . SR SE ST, L) TR RS A

ANBUE T 5 1 1) X R AR UML 4 56h9 12 A4, BT 1) 6 S 8 R BB i
K IREH K UML BB T sh s . e i B i) 3 G2 AR P I 95 5 S BR A A X
BEILAS: (AR RGN L) FEIRS T IS RAEARS . #H55%T.
AN ShASE . R DL A 2R 548 ST TUAR I ThT [X6 52 45 AR S50k o (4 T A 3
WHIRE L, (F UML TS R FENA T R RO R B . 447
BB, BETHE BRI RIS T SR CRIBRRIBUEREL) A48 T e FHBURE
R B B B R R S A, (UML I3) T 25 4225 8l) i 1)
Xif G2 IR AR

W & UML 7E4% 5 Uk i35 A X FEJUAR . (UML SERF R &) 138 T #1758
I RGEIF R BTG EEXT UML #179 R ; (H UML 2 Web NIRRT) 1He T iz
F UML #47 Web W AT ROZIF EE AR S CEMXRRGEML. B8 9
5 T H) A48 T K UML R 1 1) % G2 i s i oy 2 4R) vk 5 TR (e,
FE . HEZRS UML B) e T)iz B UML S 1 i 5ot 52 A B R——H - HE a4
AREBE %M. (UML 5 Visual Basic B AFEFIF A) FESHE T M UML FRIF|
Visual Basic F2 /7 142 5 MU vk .

BT R AROEFIAT: (COM FHFOLE) Ml (ATL HANE) , &
SR T T 1) 3 5 B SR AR T AR——COM F1 ATL £ AR #9485 5H AR NFHE,

A —4 (Executable UML £ RHE) , XAFNA T al#dT UML EE 5H Y
FEEEAR , AR I IE SEHILL B ARAS Y B sh A s mT ik, AR EE BT &
) — B AR 2K

B2, XERITW RN EAE TIHRAA MR Sl BEEa ik 58AR, F
At X VAR A ST SR R | B H AR TIRA BN D, FRNEE LW &
BT HNESUE, ATRAUL, - AEBIRA M

AT, Frm AU N RIFR B e A B, R DL | 23 FE .

FXFHEMNE B L

About the Author

Bruce was raised by wolves in the Oregon wilderness. He taught him-
self to read at age 3 and calculus before age 12. He dropped out of
school when he was 14 and traveled around the US for a few years
before entering the University of Oregon as a mathematics major. He
eventually received his M.S. in exercise physiology from the University
of Oregon and his Ph.D. in neurophysiology from the USD Medical
School, where he developed a branch of mathematics called autocorrel-
ative factor analysis for studying information processing in multicellu-
lar biological neural systems.

Bruce has worked as a software developer in real-time systems for
almost 20 years and is a well-known speaker and author in the area of
real-time embedded systems. He is on the Advisory Board of the
Embedded Systems and UML World conferences, where he has taught
courses in software estimation and scheduling, project management,
object-oriented analysis and design, communications protocols, finite
state machines, design patterns, and safety-critical systems design. He
has developed and taught courses in real-time, object-oriented analysis
and design for many years. He has authored articles for a number of
journals and periodicals in the real-time domain.

Bruce is currently the Chief Evangelist' for i-Logix, a leading pro-
ducer of tools for real-time systems development, and has worked with
Rational and the other UML partners on the specification of the UML.

! Being a Chief Evangelist is much like being a Chief Scientist, except for the burning
bushes.

xi

xii

ABOUT THE AUTHOR

He is one of the co-chairs of the Object Management Group’s Real-Time
Analysis and Design Working Group, which is currently examining the
UML for possible future real-time extensions. He also consults, trains,
and mentors a number of companies building large-scale, real-time,
safety-critical systems. He is the author of four other books on soft-
ware, including Doing Hard Time: Developing Real-Time Systems with
UML, Objects, Frameworks, and Patterns (Addison-Wesley, 1999) as well
as a short textbook on table tennis.

Bruce enjoys classical music and has played classical guitar profes-
sionally. He has competed in several sports, including table tennis,
bicycle racing, running, and full-contact Tae Kwon Do, although he
currently only fights inanimate objects that don’t hit back. He and his
two sons contemplate epistemology in the frozen north. He can be
reached at bpd@ilogix.com.

Foreword

Embedded computerized systems are here to stay. Reactive and real-
time systems likewise. As this book aptly points out, one can see
embedded systems everywhere; there are more computers hidden in
the guts of things than there are conventional desktops or laptops.

Wherever there are computers and computerized systems, there
has to be software to drive them. And software doesn’t grow on trees.
People have to write it; people have to understand and analyze it;
people have to use it; and people have to maintain and update it for
change in future versions. It is this human aspect of programming that
calls for modeling complex systems on levels of abstraction that are
higher than that of “normal” programming languages. From this also
comes the need for methodologies to guide software engineers and
programmers in coping with the modeling process itself.

There is broad agreement that one of the things to strive for in devis-
ing a high-level modeling approach is good diagrammatics. All other
things being equal, pictures are usually better understood than text or
symbols. But we are not interested just in pictures or diagrams, since
constructing complex software is not an exclusively human activity. We
are interested in languages of diagrams, and these languages require
computerized support for validation and analysis. Just as high-level
programming languages require not only editors and version-control
utilities, but also—and predominantly!—compilers and debugging
tools, so do modeling languages require not only pretty graphics, docu-
ment generation utilities, and project management aids, but also means
for executing models, for synthesizing code, and for true verification.

xiii

Xiv

FOREWORD

This means that we need visual formalisms that come complete with a
syntax to determine what is allowed and semantics to determine what
the allowed things mean. Such formalisms should be as visual as pos-
sible (obviously, some things do not lend themselves to natural visual-
ization) with the main emphasis placed on topological relationships
between diagrammatic entities, and then, as next-best options, also
geometry and metrics, and perhaps iconics, too.

Over the years, the main approaches to high-level modeling have
been structured analysis (SA), and object orientation (OO). The two are
about a decade apart in initial conception and evolution. SA, started in
the late 1970s by DeMarco, Yourdon, and others, is based on “lifting”
classical, procedural programming concepts up to the modeling level
and doing it graphically. The result calls for modeling system structure
by functional decomposition and flow of information, depicted by
(hierarchical) data-flow diagrams. As to system behavior, the early
and mid-1980s saw several methodology teams (such as Ward /Mellor,
Hatley/Pirbhai, and the STATEMATE team from I-Logix) making
detailed recommendations that enriched the basic SA model with
means for capturing behavior based on state diagrams or the richer lan-
guage of statecharts. Carefully defined behavioral modeling, we
should add, is especially crucial for embedded, reactive, and real-time
systems.

OO modeling (often under the name of OO analysis and design, or
OOAD) started in the late 1980s, and, in a way, its history is very simi-
lar. The basic idea for system structure was to “lift” concepts from
object-oriented programming up to the modeling level, and to do so
graphically. Thus, the basic structural model for objects in Booch’s
method, in the OMT and ROOM methods, and in many others, deals
with classes and instances, relationships and roles, operations and
events, and aggregation and inheritance. Visuality is achieved by basing
this model on an embellished and enriched form of entity-relationship
diagrams. As to system behavior, most OO modeling approaches
adopted the statecharts language for this (a decision that the under-
signed cannot claim to be too upset about). A statechart is associated
with each class, and its role is to describe the behavior of the instance
objects. The subtle and complicated connections between structure and
behavior—that is, between object models and statecharts—were
treated by OO methodologists in a broad spectrum of degrees of detail,
from vastly insufficient to adequate. The test, of course, is whether the

FOREWORD.

languages for structure and behavior and their interlinks are defined
sufficiently to allow the “interpretation” and “compilation” of high-level
models—that is, full model execution and code synthesis, and eventu-
ally—and hopefully—also full formal verification against requirements.
This was achieved ouly in a couple of cases, namely, in the ObjecTime
tool (based on the ROOM method of Selic, Gullekson, and Ward), and
the Rhapsody tool (from i-Logix, based on work of Gery and the under-
signed on Executable Object Modeling).

In a remarkable departure from the similarity in evolution between
the SA and OO paradigms for system modeling, the last four to five
years have seen OO methodologists working together. They have com-
pared notes, debated the issues, and finally cooperated in formulating
a general Unified Modeling Language, or UML for short, in the hope of
bringing together the best of the various OO modeling approaches. This
sweeping effort, which in its teamwork is reminiscent of the Algol60 and
Ada efforts, is taking place under the auspices of the Object Management
Group, and was led by by Grady Booch (of the Booch method), Jim
Rumbaugh (codeveloper of the OMT method), and Ivar Jacobson (czar
of use-cases). Version 0.8 of the UML was released in 1996 and was
rather open-ended, vague, and not nearly as well-defined as one might
have expected. For about a year, the UML team went into overdrive,
with a lot of help from methodologists and language designers from
various companies, and version 1.0, whose defining documents were
released in early 1997, was much tighter and more solid. Since then
there have been a number of revisions. In 1997 the UML was adopted
as a standard by the Object Management Group (OMG), and with more
work there is a good chance that it will become not just an officially
approved, if somewhat dryly documented, standard, but the main
modeling mechanism of choice for the software that is constructed
according to the object-oriented doctrine. And this is no small matter,
as more and more software engineers are now claiming that more
kinds of software are best developed in an OO fashion.

For capturing system structure, the UML indeed adopts a diagram-
matic language for classes and objects that is based on the entity-
relationship approach. For early-stage behavioral analysis, it recommends
use cases and utilizes sequence diagrams (often called message
sequence charts or MSCs), and for the full constructive specification of
behavior it adopts statecharts, as modified in the aforementioned exe-
cutable object modeling work.

Xv

xvi

FOREWORD

Bruce Douglass’ book does an excellent job of dishing out engineer-
ing wisdom to people who have to construct complex software—espe-
cially real-time, embedded, reactive software. Moreover, he does this
using UML as the main underlying vehicle, a fact which, given the
recent standardization of the UML and its fast-spreading usage, makes
the book valuable to anyone whose daily worry is the expeditious and
smooth development of such systems.

Moreover, Bruce’s book is clear and very well written, and it gives
the reader the confidence boost that stems from the fact that the author
is not writing from the ivy-clouded heights of an academic institution
or the religiously tainted vantage point of a professional methodolo-
gist, but that he has extensive experience in engineering the very kinds
of systems the book deals with. This stark difference might be termed
“the grand duality of system behavior.” We are far from having a good
algorithmic understanding of this duality. While statecharts seem ade-
quate for the intraobject specification, sequence diagrams can specify
use cases pretty well, but they are far too weak to serve the general role
of full interobject specification (for example, they cannot specify “anti-
scenarios”—ones that are forbidden). There have been recent proposals
to extend sequence diagrams so that they can be used to capture more,
but the jury is not in on those yet. Also, we are far from having a good
algorithmic understanding of the duality between the two modes of
modeling. We don’t know yet how to effectively derive one view from
the other, or even how to efficiently test whether descriptions pre-
sented in the two are mutually consistent.

The recent wave of popularity that the UML is enjoying will bring
with it a true flood of books, papers, reports, seminars, and tools,
describing, utilizing, and elaborating upon the UML, or purporting to
do so. Readers will have to be extra careful in finding the really worthy
trees in this messy forest. have no doubt that Bruce’s book will remain
one of those.

As to the UML itself, one must remember that right now UML is a
little foo massive. We understand well only parts of it; the definition of
other parts has yet to be carried out in sufficient depth to make crystal
clear their relationships with the constructive core of UML (the class
diagrams and the statecharts). For example, use-cases and their associ-
ated sequence and collaboration diagrams are invaluable to users and
requirements engineers trying to work out the system’s desired behav-
ior in terms of scenarios. In the use-case world, we describe a single

FOREWORD

scenario (or a single cluster of closely related scenarios) for all relevant
objects—inter-object behavior we might call it. In contrast, a statechart
describes all the behavior for a single object—which is intra-object
behavior.

Other serious challenges remain, for which only the surface has
been scratched. Examples include true formal verification of object-
oriented software modeled using the high-level means afforded by the
UML, automatic eye-pleasing and structure-enhancing layout of UML
diagrams, satisfactory ways of dealing with hybrid systems that
involve discrete, as well as continuous, parts, and much more.

As a general means for dealing with complex software, object-
orientation is also here to stay. Perhaps this is true of the UML too,
although my personal feeling is that in the wake of the initial excite-
ment about a standard for modeling software the UML will have to be
made smaller and tighter. Otherwise, it will become too cumbersome
and multifaceted to be really useful. I think it will gradually shrink,
leaving only three or four types of diagrams that are really needed and
are useful. The rest will probably become obsolete and will eventually
disapper.

OO is a powerful and wise way to think about systems and to pro-
gram them, and will for a long time to come be part and parcel of the
body of knowledge required by any self-respecting software engineer.
This book will greatly help in that. On the other hand, OO doesn’t solve
all problems, and by extension neither does UML. There is still much
work to be done. In fact, it is probably no great exaggeration to say that
there is a lot more that we don’t know and can’t do yet in this business
than what we do and can. Still, what we have is tremendously more

than we would have hoped for just a few years ago, and for this we
should be thankful and humb]e.

Professqr David Harel

Dean, Faculty of Mathematics and Computer Science
The Weizmann Institute of Science

Rehovot, Israel '

July 1999

Xvii

Preface to the Second Edition

I have been both pleased and gratified by the success of the first edition
of Real-Time UML: Developing Efficient Objects for Embedded Systems. 1
think the popularity of the first edition is due to both its timeliness and
the appropriateness of object technology (in general) and the UML (in
particular) to the development of real-time and embedded systems. At
the time of the publication of the first edition, it was clear that the UML
would be a major force in the development of object-oriented systems.
However, even its strongest supporters have been surprised by the
rapidity and near totality of its acceptance by developers. As one
methodologist supporting a different modeling approach expressed to
me, “l ignored the UML and then got hit with a freight train.” The UML
is wildly successful in the Darwinian sense of the term, as well in its
technical superiority, and has become the most dominant life form in
the object ecosphere.

As embedded systems gain in complexity, the old hack-and-ship
approaches fail utterly and completely and, occasionally, spectacularly.
The complexity of today’s systems is driving developers to construct
models of the system from different viewpoints in order to understand
and plan the various system aspects. These views include the physical,
or deployment, view, and the logical, or essential, view. Both views
must support structural and behavioral aspects. This is what the UML
is about, and this is why it has been so successful.

Xix

XX

PREFACE TO THE SECOND EDITION

Audience

The book is oriented toward the practicing professional software devel-
oper and the computer science major in the junior or senior year. This
book could also serve as an undergraduate- or graduate-level text, but
the focus is on practical development rather than a theoretical intro-
duction. Very few equations will be found in this book, but more
theoretical and mathematical approaches are referenced where appro-
priate. The book assumes a reasonable proficiency in at least one pro-
gramming language and at least a cursory exposure to the fundamental
concepts of both object orientation and real-time systems.

Goals

The goals for the first edition remain goals for this edition, as well. This
book is still meant to be an easy-to-read introduction to the UML and
the application of its notation and semantics to the development of
real-time and embedded systems. At the time of this writing, it is one of
two books on the UML and real-time systems. I am also the author of
the other, Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns (Addison-Wesley, 1999). Doing Hard
Time is a more in-depth look at the fundamentals and vagaries of real-
time systems, with emphasis on analysis of object schedulability, the
use of behavioral patterns in the construction of statechart models, and
how to use real-time frameworks effectively. It is a deeper exploration
of real-time systems, which happens to use the UML to express these
concepts. In contrast, Real-Time UML is primarily about the UML and
secondarily about capturing the requirements, structure, and behavior
of real-time systems using the UML.

In addition to these original goals for the first edition, the second
edition adds two more: (1) to bring the book in conformance with the
recent changes in the UML standard, and (2) to enhance the book’s
effectiveness based on feedback from the first edition.

The UML has undergone a couple of revisions since its original
acceptance by the OMG. The first revision, 1.2, is almost exclusively

PREFACE TO THE SECOND EpITION

editorial, with no significant modification. The UML revision 1.3, on
the other hand, is a significant improvement in a variety of ways. For
example, the «uses» stereotype of generalization of use cases has now
been replaced with the «includes» stereotype of dependency, which
makes a great deal more sense.

Similarly, the notion of an action in UML 1.1 relied heavily on the
use of “uninterpreted text” to capture its details. The UML 1.3 has elab-
orated the metamodel to encompass a number of different kinds of
actions, making behavioral modeling more complete. The action
semantics metamodel and how it relates to object messaging, is dis-
cussed in Chapters 2 and 4.

There have been a number of changes to the statechart model in the
1.3 revision, as well. The first edition of Real-Time UML devoted a lot of
space to statecharts, and this second edition expends even more effort
in the coverage of behavioral modeling with statecharts. Much of this
space is used for the new features of statecharts—synch pseudostates,
stub states, and so on. This resulted in a significant rewrite of Chapter
4, which deals with object behavioral modeling.

Recent consulting experience in fields ranging from advanced med-
ical imaging to the next generation of intelligent, autonomous space-
craft, in addition to reader feedback from the first edition, is reflected in
this second edition. For example, numerous consulting efforts have con-
vinced me that many developers have a great deal of difficulty under-
standing and applying use cases to capture requirements for real-time
and embedded systems. To address this need, I developed a one-day
course called Effective Use Cases, which I have given at NASA and else-
where. Principles that have proven their effectiveness in the field are
captured here, in Chapter 2. Similarly, the techniques and strategies
that have worked well for capturing object models or state behavior,
have wound up expressed in this book, as well.

Another change in this book is the elaboration of an effective
process for using the UML in product development. I call this process
Rapid Object-Oriented Process for Embedded Systems (ROPES). The
most common questions I have been asked since publication of the first
book have been about the successful deployment of the UML in project
teams developing real-time and embedded systems. Thus, Chapter 1
explains this process and identifies the work activities and artifacts
produced during different parts of the iterative lifecycle. In fact, the

XXi

Xxii

PREFACE TO THE SECOND EDITION

ROPES process forms the basis for the organization of the book itself,
from Chapter 2 through 7.2

Despite the goals of the UML in terms of providing a standard,
there has been some fractionalization as vendors try to differentiate
themselves in the marketplace. While progress will naturally involve
vendors providing new and potentially valuable model constructs
above and beyond those provided by the UML, several vendors have
claimed that their new features will be part of some new yet-to-be-
announced UML for Real-Time. Interestingly, some of these vendors
don’t even participate in the OMG, while others provide mutually
incompatible “enhancements.” By spreading this FUD (fear, uncer-
tainty, and doubt) among the developer community, I feel these ven-
dors have done a great disservice to their constituency. Developers
should understand both the benefits and risks of using single-source
modeling concepts. These features may make the system easier to
model (although, in many cases, these so-called enhancements fail in
that regard), but they also lock the product development to a single
vendor’s tool. Another risk is the inability to use model interchange
between tools when the models no longer adhere to the UML standard.
This can greatly decrease the benefits to the developer of using the
UML. In an effort to dispel some of the FUD, I've added Appendix B to
outline what it means to make changes to the standard, why no single
vendor can claim it owns the UML standard (it is, after all, owned by
the OMG), and what changes are likely to be made to the UML over the
next several years.

Finally, I would suggest that interested readers visit the I-Logix Web
site, www.ilogix.com. There you will find a number of papers on related
topics, written by myself and others, as well as the UML specifications,
tool descriptions, and links to relevant sites.

Bruce Powel Douglass, Ph.D.
Spring, 1999

? More information on the ROPES process can be had from the I-Logix web site,
www.ilogix.com, as well in another book, Doing Hard Time: Developing Real-Time Systems
with UML, Objects, Frameworks, and Patterns (Addison-Wesley, 1999).

Preface to the First Edition

Goals

Real-Time UML: Developing Efficient Objects for Embedded Systems is an
introduction to object-oriented analysis and design for hard real-time
systems using the Unified Modified Language (UML). UML is a third-
generation modeling language that rigorously defines the semantics of
the object metamodel and provides a notation for capturing and commu-
nicating object structure and behavior. Many methodologists—including
Grady Booch (Booch Method), Jim Rumbaugh (Object Modeling Tech-
nique [OMT]), Ivar Jacobson (Object-Oriented Software Engineering
[OOSE)), and David Harel (Statecharts)—collaborated to achieve UML.
Many more participated, myself included, in the specification of the
UML, and we believe that it is the leading edge in modeling for com-
plex systems.

There are very few books on the use of objects in real-time systems
and even fewer on UML. Virtually all object-oriented books focus pri-
marily on business or database application domains and do not men-
tion real-time aspects at all. On the other hand, texts on real-time
systems have largely ignored object-oriented methods. For the most
part, they fall into two primary camps: those that bypass methodologi-
cal considerations altogether and focus solely on “bare metal” pro-
gramming, and those that are highly theoretical, with little advice for
actually implementing workable systems. Real-Time UML: Developing
Efficient Objects for Embedded Systems is meant to be a concise and timely
bridge for these technologies, presenting the development of deploy-
able real-time systems using the object semantics and notation of the

Xxiii

