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PREFACE

This book has been written with the object of giving an account
of the various ways in which matrices of finite order can be reduced
to canonical form under different important types of transformation.
While the work has been planned to serve as-a sequel to a former
publication, The Theory of Determinants, Matrices, and Invariants
(1928), circumstances have allowed us to make it practically inde-
pendent and self-contained, with the least possible overlapping of
material in the two books. A certain knowledge of the elementary
theory of determinants is presupposed, but no previous acquaintance
with matrices.

The volume on Invariants—as it will be referred to in subsequent
pages—in giving an introductory account of matrices and determinants,
treated only of such properties as. belonged to the general linear
transformation ; for these are the properties which have the most
direct bearing on the projective invariant theory, to which the later
chapters were devoted. In the nomenclature of the work before
us, the treatment was confined to tle diagonal case of the classical
canonical form, in which the elementary divisors are necessarily
linear. ) '

In the present work we return to consider, in close detail, those
important cases in which the elementary divisors are no longer re-
stricted to be linear, but may be of general degree. To adopt a
geometrical mode of speaking, it is as if we had formerly been con-
cerned purely with the projective properties of quadrics in general
position, but had now returned to the consideration of all possible
distinctions between quadrics under certain prescribed conditions;
such distinctions, for example, as those which persist through all
projective transformations, or again through all rotations, and so on.

The subject-matter of the canonical reduction of matrices, which
has numerous and important applications, has received attention in
several treatises and a large number of original papers. The historical
notes which we have appended to each chapter are intended to give
a brief review of what has been done on each topic, to apportion due
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credit to pioneers, and to stimulate the student to further reading.
(We would warn him, however, to make sure at the outset, in reading
‘any work on groups or matrices, whether the author means 4B or
what we have denoted by BA when he writes a product.) The most
complete accounts of the theory available are those of Muth (Elemen-
tarteiler, 1899) and Cullis (Matrices and Determinoids, Vols. I, IT, III,
1913, 1918, 1925). We have preferred to follow the lead of Cullis, who
develops the theory in terms of the structure and properties of
matrices—in matrix idiom, as it were, rather than in terms of bilinear
and quadratic forms, or of linear substitutions.

We take the opportunity of acknowledging our indebtedness to
the work of those writers who have given a sustained account of the
theory, in one guise or another; in particular to Muth, as above, to
Bromwich (Cambridge Tract on Quadratic Forms, 1906, and various
papers), to Bocher (Higher Algebra, 1907), Hilton (Linear Substi-
tutions, 1914), Cullis (Vol. IIT of Matrices and Determinoids, 1925),
and Dickson (Modern Algebraic Theories, 1926).

While we have tried to include all ihe principal features of the
theory and have sought to make the sequence of argument reasonably
fluent, even allowing ourselves moderate latitude in digression and
explanation, we have, at the same time, aimed at a certain compact-
ness in the formulee and demonstrations. This has been achieved in
the first place by a systematic use of the matrix ‘notation, to which
we shall again refer; in the second place, by confining the contents
of each chapter almost entirely to general theorems, and by relegating
corollaries and applications to the interspersed sets of - examples.
These examples are intended to serve not so much as exercises, many
being quite easy, but rather as points of relaxation. and running
commentary ; they will, however, be found to contain many well-

. known and important theorems, which the notation establishes in the
minimum of space. :

We attach the greatest importance to the choice of notation.
Inferring from perusal! of Cullis that the emphasis laid since the time
of Cayley on the square matrix might well be removed, we resolved to
continue the plan adopted in Invariants by making the fullest use of

'rectangular matrices and submatrices, and of partitioned matrices,
by insisting on the condition that the non-commutative rules of pro-
duct order hold without exception, and by distinguishing always
between a matrix of a single row and one of a single column. When
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this is done, all the systems which appear, whether scalars, vectors, or
matrices, can be regarded as rectangular matrices or products of .
rectangular matrices, and the theory is thus greatly unified. We
would draw special attention to the notation 2’4y for the bilinear
form, a’Ax for the quadratic, and #Az for the Hermitian form, be-
lieving that these notations will enable the linear transformations and
the bilinear, quadratic, and Hermitian forms which are fundamental,
for example, in analytical geometry, dynamlcs or mathematxcal stat-
istics, to be manipulated with ease.

Through considerations of space we have not been able to include
many applications to geometry, but the results are readily adaptable:
nor to the theory of Groups, where, as Schur has shown, partitioned
matrices can be used with elegance and advantage.

The reader aiready familiar with the theory will also observe that
* certain established methods of dealing with the subject have hardly
been touched upon, notably the methods of Weierstrass and Darboux,
the theory of regular minors of determinants and the treatment of
quadratic forms by the methods of Kronecker. We have, in fact,
allowed ourselves a free hand in dealing with the results of earlier
writers, in the belief that the outcome would prove to be an easier
approach to a subject that has often failed to win affection; and the
methods of H. J. S. Smith, Sylvester, Frobenius, and Dickson proved
in themselves quite adequate without the inclusion of other parallel
theories. A thorough assimilation of the algebraic implications of
Euclid’s H.C.F. process, and of the notion of linear dependence, fur-
nishes the clue to many passages. Our tribute to Kronecker finds
expression in Chapter IX, which is an essay towards giving a fresh
derivation of his classical results concerning singular pencils ; we have
treated this by rational methods, and we trust that an intricate
argument has been materially simplified.

Our best thanks are due to Dr. E. T. Copson and Mr. D. E.
Rutherford at St. Andrews University, who have taken an interest
in the progress of the work, and have offered valuable suggestions at
the proof-reading stage; and especially to Dr. John Dougall, for his
critical vigilance and expert mathematical and technical help during
the passage of the work through the press.

H-W. T.
A. C A

ST. ANDREWS

EDINBURGH } December, 1931.
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’ The
Theory of Canonical Matrices

CHAPTER I
DEriNiTIONS AND FUNDAMENTAL PROPERTIES OF MATRICES

1. Introductory.

The theory of canonical matrices is concerned with the systematic
investigation of types of transformation which reduce matrices to
the simplest and most convenient shape. The formulation of these
various types is not merely useful as a preliminary to the deeper study
of the properties of matrices themselves; it serves also to render the
theory of matrices more immediately available for numerous appli-
cations to geometry, differential equations, analytical dynamics, and
the like. Quite early, for example, in co-ordinate geometry, when the
equation . of a general conic is simplified by reference to principal
axes, or again when two general conics are referred to their common
self-conjugate triangle, the procedure involved is really equivalent
to the canonical reduction of a matrix.

2. Definitions and Fundamental Properties.

It will be of advantage to recall briefly the definitions and funda-
mental properties of matrices. By a matrix 4 of order » is meant a
system of elements, which may be real or complex numbers, arranged
in a square formation of n rows and columns,

ay @y ... @,
Gy Gy ... Uy, ~’

A=[a,-,]=__.._,_,...(l)
. lanl an2 e @ annJ .
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where a;; denotes the element standing in the ith row and the jth
column, the (ij)th element, as we shall frequently call it. The deter-
minant having the same elements is denoted by | 4|, or | a;;|, and is
naturally called the determinant of the matrix 4. We shall also make
continual use of rectangular matrices, of m rows and » columns, or, as
it will be phrased. of order m by n, m X n. Where there is only one
row, so that m = 1, such a matrix will be termed a vector of the forst
kind. or a prime; and it will often be denoted by a single small italic
w or v». Thus
U=y Y - - gUg)e . + . - . . (2)

On the other hand, a matrix of a single column, of n elements, will
be termed a vector of the second kind, or a point; and to save space it
will not be printed vertically but horizontally, and distinguished by
brackets { ...} Thus

e={8, Tp ..., T} - - . . . - (3)

The accented matrix 4’ = [a;;], obtained by complete interchange
of rows and columns in 4, is called the transposed of 4. The ith row
[@i, @igs - .. . @] Of 4 is identical with the ith column of 4’. For
vectors we have u' = [u;] = {u;}, ' = {&} = [z]].

Matrices may be multiplied either by ordinary scalar numbers or
by matrices. The effect of multiplying a matrix 4 = [a,;] by a scalar
A is to multiply each element of 4 by A. The product is defined by

M = /\[a,,] = [Mﬁ] =4\ . . . . . (4)

Matrices of the same order are added, or subtracted, by adding, or
subtracting, corresponding elements; so that a linear combination of
two such matrices 4 and B, with scalar multipliers A and p, is defined by

M+ pB=[(Aa;; + pby)l . . . . . (B)

Hence, if C= A4+ uB, then ¢;; = Aa,;;+pb,;: and also C'= A4’ + uB’,
for the transposed matrices.

The null or zero matriz, whether square or rectangular, has all its
elements zero, and will often be denoted without ambiguity by an
ordinary cipher. The unit matriz, I, is necessarily square; it has a
unit for each element in the principal diagonal, and the remaining
elements all zero. Thus

I=[8) - 8, { 0, ¢ 4:.7:] "

- - (8
=1, i=4f ™,
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3. Matrix Multiplication. L

The multiplication of matrices by matrices, or matrix multipli-
cation, differs in important respects from scalar multiplication. Two
matrices can be multiplied together only when the number of columns
in the first is equal to the number of rows in the second. Matrices
which satisfy this condition will be termed conformable matrices; their
product AB is defined by .

B = [a,j] [b;;] = é: @byl =[e;]=0C, . . . (7)

where the orders of 4, B, (' are m X p, p X n, m X n respectively.
The process of multiplication is thus the same as the row-by-column
rule for multiplying together determinants of equal order. If the
matrices are square and each of order n, then the corresponding re-
lation | A || B| =| C| is true for the determinants |4 [, | B|, | C|.

Matrices are, regarded as equal only when they are element for
element identical. Therefore, since a row-by-column rule will in general
give different elements from a column-by-row rule, the product B4,
if it exists at all, is usually different from AB. (4B and B4, it may
be observed, can coexist only if m = n)) We must therefore distin-
guish always between premultiplication, as when B, premultiplied by
4, yields the product AB, and postmultiplication, as when B, post-
multiplied by 4, yields the product BA. If AB = BA the matrices
A4 and B are said to commute, or to be permutable, and one of the
applications of the theory of canonical matrices is to find the general
matrix X permutable with a given matrix 4. Except for the non-
commutative law of multiplication (and therefore of division, defined
as the inverse operation) all the ordinary laws of algebra apply to
matrices, very much as they do in the elementary theory of vectors.
Of ‘particular importance is the associative law (4B)C = A4(BC),
-which allows us to dispense with. brackets and to write .4 BC ‘without
ambiguity, since the double summation Z.,a,kbuc,; can be carried

out in either of the orders indicated. Snmlarly for thesum 4 + B + C.
The above remarksare restricted to the case of matrices of finite order;
for the associative law of multiplication does not necessarily hold when -
any of the matrices involved has one or both of the orders m, n infinite.
The integers m, n, p which appear in (7) may take any positive
 value. One extreme case, when m = n = 1, yields the inner product
of the vectors » and z. Thus

UE= U Ty + Uy + .. F w2, = Dy =2a'w'. . (8)
k
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The product here is a scalar. On the other hand, the product zu, |
which exemplifies (7) with p =1, m =, is & square matrix of order
n, having z,u; for its (1)th element, namely

rU= [:vi.u,] — (u’zf)’. ()
4. Reciprocal of a Non-Singular Matrix.
When the determinant | 4 | = | @;;| of a square matrix 4 does

not vanish 4 is said to be non-singular, and possesses a reciprocal or
inverse matrix R such that

AR=RA=1.

The reciprocal R is unique, as will be seen, and is readily obtained,
from the theory of determinants. If 4,; denotes the co-factor of a;; in
| 4|, the matrix [4;,] is called the adjoint of A, and exists whether 4
18 singular or not. (The determinant | 4, | is the adjugate of | 4].)
It follows that -

[a;;] [4;] = [%aikAjk] =[ | 4 I 8] = ‘ 4 | I. . (10)

Thus the product of 4 and its adjoint is that special type of diagonal
matrix called a scalar matriz; each diagonal element (; = 7) is equal
t0 the determinant | 4 |, and the rest are zero. If | 4 | % 0, we may
divide throughout by the scalar | 4 |, obtaining at onces the required
" form of R. The (#)th element of R is therefore A;;| A|, or, let us
say, a’f, where the reversed order of upper indices must be carefully
noted. Writing now 4! instead of R, we haye

A = [0¥] = [4,,] 4 |11, |40 . . ’ (11)

By actual multiplication 44-1= 4-14 = I; so that the name
reciprocal and the notation 4! are justified. It may be observed in
passing that in products of matrices the unit factor I may be intro-
duced or suppressed at pleasure, like the unit factor of scalar algebra.

5. The Reversal Law in_ Transposed and Reciprocal Products.

A fundamental consequence of the non-commutative law of matrix
multiplication is the reversal law, exemplified in transposing and re-
ciprocating a continued product of matrices. Thus

(ABY = B'A’, (ABCY =C'B'4’; . . . (12)
and, if |4| 40, |B|=%0, |C|+0,
(AB)' = B-'4-1, (ABC)'= C-1B'4-%. . . (13)



1] ' PARTITIONED MATRICES 5

EXAMPLES

1. Prove that the reciprocal of a non-singular matrix is unique. [If AR = I,
and also AS = I, then AR — AS = 0, the null matrix. By the distributive law
A(R— 8) =0, and hence A '4(R— 8)=0. Thus I(R —S)=R— 8 =0;
and so R = 8. All solutions X of the equation AX = I are therefore equal. But
A~ is a solution and is therefore the unique solution.] .

2. Verify (13) by premultiplying by B, 4, or C, B, A in turn.
8. Prove that [a%/] [6%] = [¢#], where 4, j =1, 2...., n, provided that

o = S aftph,
k=1
4. If 4 is a square matrix of order n, while % and z are vectors of the row and

column kinds respectively, then u4 denotes a row vector while Az denotes a
column vector. The products Au, x4 are undefined if n > 1.

5. What do 4’u’, ’A’ represent? [Column vector, row vector.]

6. Matrices partitioned into Submatrices.

It is convenient to extend the use of the fundamental laws of com-
bination for matrices to the case where a matrix is regarded as con-
structed not so much from elements as from submatrices, or minor
matrices, of elements. (Cf. Invariants, p. 38.) For example, the matrix

(12 3
A=|4 56
L7 8:9 !
can be writteh
. —P_Q
A= ,
R S

where

pz[i 2] Q»=[Z],~ R=[7,8, S=[9]

Here the diagonal submatrices P and S are square, and the partition-
ing is diagonally symmetrical. In the general case there may evidently
be n-or fewer partitions row-wise or column-wise. Let B be a second
square maprix of the third order similarly partitioned:

2 .1
B=[P1 Ql]= 31 2
R, §;

2 .

then by addition and multiplication we have
P+P Q+Q PP,+QR, PQ1+QS1]
A+ B= , AB= § 14
5= an ses) = [reism motss] 09
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as may readily be verified. In each casé the resulting matrix is of the
same order, and is partitioned in the same way, as the original matrix
factors. For example, in AB the first element, PP, + QR,, stands for
a square submatrix of two rows and colunms: and this is possible
since, by definition, both products PP, and QR, consist of two rows

and two columns. Similar remarks apply to the other submatrix
“ elements . Thus

1 2 1 3 5 0 5
racros=, o] [o]+[s]m=[r]+[o]- [}
giving the proper rectangular shape for the upper right-hand minor. -

It was observed earlier that a rectangular matrix B could be pre-
multiplied by another rectangular matrix 4, provided that the number
of rows in B were equal to the number of columns in 4. If 4 and B
are both partitioned into submatrices such that the grouping of columns
in 4 agrees exactly with the grouping of rows in B, it is not difficult
to show that the product 4B can equally well be obtained by treating
the submatrices as elements and proceeding according to rule.

The case of square matrices of the same order, similarly and sym-
metrically partitioned, is important. Let 4 and B be two such matrices,
and let 4;; henceforth denote the (¢j)th submatrix in the partitioned
form of A. (There will be little further occasion in this bwok to refer to
determinantal co-factors, and the notation A;; is well suited to the
new concept.) Then if p, r are the orders of 4,;, those of B,, are 7, p,
and those of another minor with the same %, as B,;, will be 7, ¢ with
the same 7. For each value of & the product 4,,B,, is thus a submatrix
of orders p, ¢; the sum X4;,.B;; can therefore be formed, and gives

k

the (z7)th submatrix of the product 4B, where the latter is in par-
titioned form similar to 4 and B. We have then, for matrices
4 = [a;], B = [b;], similarly and symmetrically partitioned,

AB:[ZA{kBk7]=[Cﬂ]9 S (15)
k L

where, of course, in each term of C;; the order 4, B is preserved.
Similarly but unsymmetrically partitioned square matrices 4 and
B-cannot be multiplied together by a rule of this kind; each can,
however, be multiplied by the transposed matrix of the other, for then
the partitioning of the column-groups of the multiplier agrees with
that of the row-groups of the multiplicand. The transposed matrix 4’
is readily seen to be 4’ = [4';;], where the minor matrix 4’;; is itself
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transposed, and for matrices 4, B similarly but unsymmetrically
partitioned,

AB':——[};‘.AN,B,,C]. 5 3 o = - KI6)

EXAMPLES"

1. If 4 and B are similarly but unsymmetrically partitioned, with u par-
titions into row-groups and v into column-groups, show that the product 45’ is
symmetrically partitioned according to the w row-partitions of 4;_ and that 5’4
is symmetrically partitiored according to the v column-groups of A.

v v

A B AB

2. Distinguish by examples between a symmetrical matrix and a symmetri-
cally partitioned matrix.

: A1y Gy Q3 I
3. If O — |: 4 "’:I = | @ G Gy 2
L A3 Q3 Qg3 I3

U Uy u,

b

A% 4 zu. Ax
that C? =
prove tha [ ud g

[Note that 2u is a square matrix of order three, while uz is a scalar of the first
order.] !

A . L.
S ] L . .
4 I . A=1. . w1 . =[. M .],
v v s ik s . . N
o
R Y O | po1
where L = I~ M= , N=y, (X% @, v 4= 0), find the values

of 4% A%, A7, and of any rational function f(4) in terms of L, M, N.

_ .
{In general - f4)= [ . f(M) . jl J
_ . J()



