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Preface

Teaching a course or learning is not exclusively an elegant display of
knowledge. The method of teaching or learning, as the case may be,
must manifest a logical and rigorous continuity. In general, it is this
logical rigor of thought that makes a course interesting and consequently
appealing to the mind that has a desire to learn. Logic is essential for
reasoning. Furthermore, accurate reasoning requires accurate usage of
the rules of logic. Today, every field of study has developed its own
specialized operational logic which enables reasoning in specialized terms.
To the scientist and the engineer, mathematics is a symbolic or shorthand
form of logical thinking enabling him to reason his premise to a satisfac-
tory conclusion. If experimentation of the physical phenomenon is
possible to perform, it will yield the same conclusion, provided the
same conditions prevail in both cases. However, it would be wise for
scientists and engineers to remember the thoughts of Albert Einstein on
logical thinking as related to science. He said, “Pure logical thinking
cannot yield us any knowledge of the empirical world; all knowledge
of reality starts from experiment and ends in it.” Furthermore, he
warns us also that “experience remains, of course, the sole criterion of
the physical utility of mathematical construction. But the creative
principle resides in mathematics.”’!

This book is intended for the beginning student in mechanics of
fluids. It will provide him with the basic and fundamental concepts
so necessary for advancement in the fields of general fluid dynamics
(hydro- and aerodynamics). Throughout the book an attempt has been
made to present the concepts and notions as simply as possible, without
distortion of meaning or significance. First, the most important con-
cepts, variables, constants, and parameters necessary for the formula-
tion of the most basic axioms and theorems are presented in a logical
sequence. Without the clear understanding of these concepts, axioms,
and theorems, the student cannot hope to grasp clearly the nature,

! Albert Linstein, “On the Method of Theoretical Physics,” from Essays in Science,
Philosophical Library, New York, 1934.
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mechanism, and scope of applied problems related to the dynamics of
flowing fluids.

The same general laws of equilibrium already encountered in the
mechanics of solids will be found to apply for fluids as well. Some
concepts in kinematics and dynamiecs pertaining to solids will be used
for fluids also. Some concepts will require certain alterations in order
to include fluids. Finally, some new concepts will be introduced which
will have a meaning for fluids but not for solids. In essence, it may
be said that solid mechanics as well as fluid mechanics are limited
studies of a broad field in general mechanics. In elementary books it
is common practice to cover fluid statics in great length at the begin-
ning of the course. This practice is not followed here for two reasons:
Since good treatments of fluid statics are available in many textbooks,
any extended effort on the part of the present author would be merely
a duplication of material. Furthermore, since the behavior of fluids
under static conditions is similar to that of solids, they are generally
treated together in an earlier course.

In mechanics of rigid bodies, the relative positions of the elemental
masses constituting the body always remain unchanged. This can be
accomplished only when the elemental mass behaves as the body itself.
In mechanics of deformable bodies, however, the deformation within
the entire body must be distributed uniformly in order to say that the
behavior of the elemental mass is a small-scale replica of the body’s
behavior. A fluid substance deforms under the influence of external
forces. This deformation is often nonuniformly distributed throughout
the extent of the fluid without causing separation of mass. Under these
circumstances the over-all deformation, being the sum of the nonuniform
elemental deformations, will not be a scale replica of the deformation
of any elemental mass. In fluid mechanics a knowledge of the behavior
of the elemental mass is essential in order to deduce the behavior of
larger masses. It was just mentioned that every fluid portion through-
out the flow field does not necessarily move in precisely the same
amount; therefore, since small fluid portions must be examined in detail,
the use of partial and total differentiation is inevitable. In most in-
stances it is not unreasonable to postulate that the fluid properties vary
in a smooth, continuous fashion in a given region of consideration.
Therefore, provided that these variations and their derivatives are con-
tinuous, a property of the fluid at a given point can be expressed in
terms of the property at another neighboring point. This interrelation
between properties at two neighboring points in a continuum comes to
us from calculus and is generally identified as Taylor’s series expansion.
This famous theorem states that if a property P and its derivatives are
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known at a given point z,, then the same property at a neighboring
point x; is evaluated from the relation

| = ey — )2 2P
Py = Peo + = (57) + O (5F), +

The use of total differentiation in the above equation implies that the
property P is a function of x alone. If it were a function of other vari-
ables as well, then a similar expression could be written for every
variable in terms of the partial derivatives with respect to that variable.
I'or a finite variation (x; — ) the series expansion for P(z;) is infinite.
This means that the accuracy with which P(z;) can be evaluated from
P(x0) and its derivatives will depend on the number of terms considered
in the expansion. Naturally, the smaller the difference (v, — o), the
smaller will be the contribution of the higher-order terms. It is there-
fore conceivable that if (1, — ) approaches an infinitesimally small
variation dx, second-order and higher terms are made negligible com-
pared with the first two terms on the right-hand side of the equation.
This implies, then, that the variation of property is in the form of a
straight line in the interval dz. Actually, the milder the variation of
P on z, the stronger the justification to neglect higher-order terms.

The differential equation expressing the motion of a fluid element
may, in most instances, involve more than one dependent variable. In
that case, as in algebraic equations, as many independent equations are
needed as independent variables in order to obtain a solution in terms
of the independent variables alone. In mechanics of fluids these addi-
tional equations are obtained from axiomatic laws such as the conser-
vation of mass and energy and the equation of state of the substance.
This availability of the exact number of equations does not necessarily
guarantee a solution; it merely defines the problem. The engineers and
scientists are dependent on available mathematical information on how
to obtain solutions in a form that is easily handled in practice. Most
fluid-dynamic problems are well defined; this means that the physical
set of conditions required to define the problem is complete. Some of
them are unsolvable today, however, on account of the lack of mathe-
matical tools. Where mathematical tools are not abundant, the scien-
tist and engineer must resort to experimental means. The experimental
approach is comparatively slower, more expensive, and generally more
tedious. In essence, theory and experiment depend on each other for
sensible progress in a given field.

During the past years, extensive contributions have been made in
the field of fluid dynamics. A student, after having been exposed to
general mechanics of fluids or aerodynamics, will be able to follow the
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basie concepts of viscous, nonviscid, rotational, irrotational, compress-
ible, and incompressible states of fluid motion. Needless to say, less
prepared students must devote extra effort to grasp the basic funda-
mentals they lack if they wish to assimilate their.graduate courses satis-
factorily. In a similar fashion, the less well-prepared student who
chooses to work for industry will find it difficult to follow his industrial
leaders working on contemporary research, design, or development prob-
lems. Generally speaking, the author believes that this book will give
the undergraduate student the quality of knowledge in mechanics of
fluids that is expected from a prospective graduate student.

Salamon Eskinazi
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The following is a list of the most commonly used symbols in the book.
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Acceleration

Speed of sound in the fluid

Cross-section area

Width

Integration constant

Speed of pressure wave

Specific heat at constant pressure

Specific heat at constant volume

Dimensional constant in Newton’s law of gravitation
Pressure coefficient

Velocity coefficient

Discharge coefficient

Contraction coefficient

Drag coefficient

Distance

Diameter

Diameter of pipe

Drag

Internal energy per unit mass

Modulus of elasticity

Energy

Frequency

Resistance coefficient

Force

Froude number

Gravitational acceleration

Gravitational acceleration at 45° latitude and sea level
Dimensional constant in Newton’s law of inertia
Grashoff number

Enthalpy
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Heat transfer coefficient
Height

Head loss

Produet moment of inertia
Moment of inertia about z-axis
Mechanical equivalent of heat
Size of roughness

Strength of point source
Strength of line source
Linear length
Characteristic length

Lift force

Equivalent length

Mass

Moment

Mach number
Metacentric height
Exponent in polytropic process
Pressure

Total pressure

Power

Péclet number

Heat transferred

Rate of mass flow

Radius

Radius of the earth
Dimensional gas constant
Radius of curvature
Reynolds number

Length of path

Entropy

Surface area

Time

Surface-tension force
Period

Temperature

x-component of velocity
x-component, of turbulent velocity fluctuation
Shearing velocity

Velocity

Steady-state velocity
Unsteady-state velocity
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Temporal mean velocity
Velocity component normal to s
Velocity of undisturbed flow
y-component of velocity

Radial component of velocity
Peripheral component of velocity
y-component of turbulent velocity fluctuation
Velocity

z-component of turbulent velocity fluctuation
z-component, of velocity

Work

Weight

Weber number

Cartesian coordinate
Coordinate of center of pressure
Coordinate of centroid
Cartesian coordinate
Coordinate of center of pressure
Coordinate of centroid
Cartesian coordinate
Coordinate of center of pressure
Coordinate of centroid

Angle

Angular acceleration

Coeflicient of compressibility
Coefficient of thermal expansion
Coefficient of tension

Angle

Ratio of specific heats
Circulation

Boundary-layer thickness
Displacement thickness
Resultant small pressure

Ratio of bearing width
Vorticity

Dimensionless variable

Angle of deformation

Angle

Momentum thickness
Temperature-lapse rate
Absolute viscosity

Kinematic viscosity
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Dimensionless grouping
Density

Surface-tension coefficient
Normal viscous stress
Shear stress
Dimensionless pressure gradient
Potential function

Load factor

Drag factor

Stream function

Angular velocity

Subscripts
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max

>~ g

Pertaining to z-direction
Pertaining to y-direction
Pertaining to z-direction
Inlet or input

Outlet or output

Along streamline
Maximum value

Spatial average
Pertaining to wall
Along length

Across boundary layer

Superscript

o]
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Pertaining to stagnation point
Property at sonic point
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