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EMBEDDABLE CR-STRUCTURES AND
DEFORMATIONS OF PSEUDOCONVEX
SURFACES

JOHN BLAND* AND C. L. EPSTEIN*

ABSTRACT. This is a somewhat expanded version of the
lecture presented by the second author in Beijing, China
at the International Conference on Complex Analysis and
Singularities, June 19, 1994. Let V be a strongly pseu-
doconvex surface in CV with smooth boundary 8V and
only normal interior singularities, for example the link of
an isolated normal surface singularity. In this lecture we
describe a formal deformation theory for the CR mani-
fold OV and show that it is naturally isomorphic to the
formal deformation theory for V. Among other things,
we obtain a cohomology group defined on the 0V which
represents the first order moduli of the singularities of V.
We also obtain a normal form for the formal deformations
of the CR-structure and a non-linear system of equations
whose formal solutions are precisely the aforementioned
formal deformations. This system of equations is therefore
a good candidate for the 2-dimensional analogue of Kuran-
ishi’s equations for the base space of a versal deformation
of an isolated singularity in 3 or more dimensions. These
results are proved in detail in [4].

1. INTRODUCTION

A complex manifold is a smooth even dimensional manifold V' with
a splitting of the complexified tangent space:

TVC=T"Ve TV, TWV=T0V.

1991 Mathematics Subject Classification. 14B07, 14B10, 14J17, 32C16,
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2 JOHN BLAND AND C. L. EPSTEIN

The subbundle 7%V must satisfy the following conditions

1. fiber-dimc7T%'V = dimc V,

2. TV NT%V = the zero section,

3. IfU CVisanopensetand Z,W € C®(U,T>'V) then so

does [Z, W].

The third condition is called the integrability condition and it be-
comes very restrictive as soon as the dim¢ V' > 1. The Newlander-
Nirenberg theorem asserts that to such an integrable complex struc-
ture is associated a coordinate atlas {(U,, ¢ )} such that

d)a*TO’lV IUQZ TO,lcn I¢Q(Ua) .
This implies that:
Ozba0dz' =00n ¢s(UsNUp), i=1,...,n.

If M — V is a real hypersurface then the complex structure on V'
induces a structure on the complexified tangent space of M :

T"'"M =TM QCNT*V |y .

This is called a CR-structure and it satisfies conditions analogous to
those above:

1. fiber-dimcT*' M = 1(dimg M — 1),

2. TYMNT% M = the zero section,

3. IfU C M is an open set and Z,W € C>®(U,T*' M) then

so does [Z, W].
In this case (3’) is a non-trivial condition as soon as dimg M > 3.
Besides their dimension, complex manifolds have no local invari-

ants. This is not the case for CR-manifolds. If {Z;,...,Z,_,} is a
local frame field for T"° M then we can select a real vector field T so
that {Z.,...,2Z,_1,2,,..., Zn_l,T} defines an local framing for the
full complexified tangent space with the induced orientation. The
following Lie brackets computed modulo T*°M @ T%'M define a
maftrix c;; :

[Zia Z]] = Z.CiijOd{Zl, ceey Zn—la Zly ceey Zn—l}-
The Levi form is the Hermitian form defined on T*°M by
E(Zi, ZJ) = cij-

The signature of the Levi form is defined independently of the choices
involved in this definition. The CR-structure is strongly pseudocon-
vex if the Levi form is positive definite. The Levi form at p € M
measures the order of contact between M at p and complex lines in
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V. If M is strongly pseudoconvex at p then a complex line through
p can be at most tangent to M at p and remains locally on one side
of M.

A function, f defined on V is called holomorphic if

Zf =0 for all sections Z of T*'V.

This is described invariantly by introducing the d-operator, it is de-
fined by

of =df |roay . _
The function, f is holomorphic if and only if df = 0. The restric-
tion of a holomorphic function, f to a hypersurface M satisfies an
analogous equation if dimg M > 3 :

Zf |m= 0 for all sections Z of T%' M.
The invariant definition is in terms of the operator 9, :
Of = df |10,
if the function f is the restriction of a holomorphic function then
O f =0.

A function that satisfies this equation is called a CR-function. If M
is the strongly pseudoconvex boundary of compact complex manifold
then actually this condition is also sufficient.

Proposition 1.1. [19] If dimg M > 3 and M is the strongly pseudo-
convex boundary of compact complex manifold V then every function
f defined on M which satisfies 9,f = 0 has an extension to V as a
holomorphic function.

It is clear that under the hypotheses of this proposition questions
about holomorphic functions on V' can be rephrased in terms of ques-
tions about CR-functions on 9V.

A CR-structure on an odd dimensional manifold M can also be
defined intrinsically. It is simply a subbundle, T%! M of the complex-
ified tangent bundle with properties 1’, 2’, 3’ as above. Given a com-
pact manifold with a CR-structure the question of principal interest
is whether or not it can be realized as the boundary of a compact
complex space. If the structure is not strongly pseudoconvex then
there are many examples that indicate that this is not usually the
case. However if the dimension of M is at least five and the structure
is strongly pseudoconvex then results of Rossi and Boutet de Monvel
shows that this is always the case.
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Theorem 1.2. [5], [16] If M is a compact strongly pseudoconvez
manifold with dimg M > 3 then there is a normal Stein space V with
smooth boundary such that

oV =M.

Closely related to this problem is the question of embeddabil-
ity. Let (M,T%'M) denote a compact strongly pseudoconvex CR-
manifold. We say that (M, T%! M) is embeddable if there is a smooth
embedding ¢ : M — CV such that:

(1.1) P TN M = T (M).

This condition is equivalent to requiring the coordinate functions
of 1 to be CR-functions. The right hand side of (1.1) denotes the
CR-structure induced on a submanifold N — CV from the ambient
complex structure on CV :

T'N =TN ® CNnT>CN.

This is a generalization of the construction defined above to the case
of submanifolds of higher codimension. Using theorems of Harvey
and Lawson, Boutet de Monvel and Kohn it follows that the property
of embeddability is equivalent to the property that (M,T%' M) arise
as a compact hypersurface in a normal Stein space, see [9] and [10].
Indeed Boutet de Monvel proved

Theorem 1.3. [5] If (M, T%' M) is a compact strongly pseudoconvex
CR-manifold with dimg M > 3 then there is an CR-embedding of
(M, T°*M) into CN for some N.

In both the Rossi and Boutet de Monvel theorems three dimen-
sional manifolds are excluded. In this case the fiber dimension of
T%' M is one and so the integrability condition, 3’ is vacuous. This
creates an abundance of CR-structures. Many of them are quite
pathological in that they do not arise as the boundaries of compact
complex spaces and consequently cannot be embedded into CV for
any N. The first example of this phenomenon in the literature is
found in [16]. One begins with the induced structure on the unit
three sphere. The fiber of T%'S? is spanned at (z,w) by the vector
field

Zo = wo; — 20g.
If € # 0 is a small complex number then the CR-structure which is
spanned at each point by the vector field

Ze = Zo + €2
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cannot be realized as the boundary of any compact complex space.
Indeed Burns showed the all solutions of the equation

Z.f=10

are even functions if € # 0. Thus the CR-functions do not separate
points on S3.

If T%!' M is a CR-structure on a compact three manifold then in a
neighborhood, U of a given point there is a vector field Z such that

C>®(U, T**M) = fZ where f € C*(U).

The local deformations of this structure are parametrized by func-
tions @ € C*®(U) with ||¢|[z~ < 1. The deformed structure corre-
sponding to ¢ has fiber at p spanned by Z, + ¢(p)Z,. A globally de-
fined deformation is given by a section of the bundle
Hom(T%'M,T*°M). If ® is such a section then we denote the de-
formed structure by Ty’ M, the fiber at p is given by

To, M ={Z +®,(Z): Z € T)"M}.

A result of Nirenberg refined by Jacobowits and Treves implies that,
in the C*®-topology on sections of Hom(T%'M,T"°M), the generic
structure is not embeddable.

Associated to a CR-structure is a “0,-operator.” The correspon-
dence is as follows: a section ® of Hom (7% M, T"°M) is equivalent
to a section of Hom((T"°M)*, (T°'M)*). We define 92 by

Qf’f:ébf+<1>08,,f.
Here the element 9, f of (T"°M)* is defined by
8bf — df |T1,0M >
A CR-function relative to the CR-structure Ty’ satisfies the equation
& f =0

It is clear that given such a differential operator one can reconstruct
the subbundle Ty M. In the sequel we use the notation (M, 0y) to
denote the CR-manifold, M with the CR-structure defined by 0,.

Over the last several years, along with several collaborators, we
have been trying to understand when a CR-structure on a three di-
mensional manifold is embeddable. We take an embeddable structure
0 as a reference structure. Let V denote the variety in CV bounded

by (M, 3?). The deformations of (M,d?) are naturally divided into
three categories:
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1. Structures which can be realized as deformations of the
hypersurface within V. We call these wiggles.

2. Structures which can be realized as a hypersurface in a
different Stein space.

3.  Structures which are non-embeddable.

Ideally one would like to have a normal form for the CR-structures on
M near to T%' M in which each of these types is easily recognizable.
Indeed the results in [12] and [3] lead to such a description for CR-
structures on S near to the induced structure on the unit sphere.

In the Rossi example described above the deformed structures de-
fined by Z, are invariant under the Z,-action (z,w) — (—z, —w).
The reference structure, Z, on RP?® ~ S%/Z, can be realized as an
embedding via the map

+(z,w) — (2%, V22w, w?).
The image of this map is
{22y — ¢ = 0} N {|(z,t,y)| = 1}.

Even though Z, is non-embeddable as a structure on S* it is em-
beddable as a structure on RP?. Indeed there is a simple formula for
the deformed embedding functions:

+(z,w) — (22 — ed?, V2(2w + €2D), w* — €z%).
The image lies in the variety
2zy — t? = —2e.

This family of CR-structures on RP? corresponds to the versal defor-
mation of the singularity at (0, 0,0) in the quadric 2zy—t? = 0. These
structures are therefore deformations of type 2 for the CR-manifold
(RP?, Z,). Note finally that ¢ = € lies in the ker ZZ.

In the lecture we describe results on the problem of identifying
those CR-structures which correspond to deformations of the interior
singularities in the normal Stein space V bounded by (M,dY). It
may indeed be the case that, modulo wiggles, these are the only
deformations of type 2. It is in any case an essential problem to solve
if one wants a reasonably complete description of the deformations
of an embeddable CR-structure on a 3-manifold.

This is not a new problem. Indeed in [11], Kuranishi introduced
a program for constructing the versal deformation of an isolated sin-
gularity by studying the integrable deformations of the CR-structure
on a link of the singularity. He also introduced an additional con-
dition to remove the effect of wiggles. His condition is simply that,
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to first order, the deformation should not be tangent to the initial
variety. The construction of the base space of a versal deformation
is reduced to the problem of constructing the solution space for a
system of partial differential equations:

I(®) =0,
() L(®) = 0.

Here I is a non-linear operator given by the integrability condition,
L is a linear operator that removes the wiggles. In dimensions 7
and above, Akahori, Miyajima, Buchweitz and Millson have shown
that this approach does produce the versal deformation of an isolated
singularity of depth 3. See for example [1], [2], [14], [15], [6] or the
the expository paper of Millson, [13]. Millson’s paper contains an
extensive bibliography.

In dimension five there are technical difficulties which have stalled
the analysis of (K). If the dimension is three, then this approach
seems doomed to failure as the integrability condition is vacuous
and Kuranishi’s system degenerates. Motivated by the algebraic ge-
ometric definition of a formal deformation, we have introduced the
notion of a formally embeddable perturbation of an embeddable CR-
structure. If (M, 0?) denotes the reference CR-structure and V the
normal Stein space it bounds, then under some mild technical hy-
potheses on V' we have shown that the formal CR-deformation theory
of (M, 8?) corresponds, to all orders to the formal deformation theory
of V.

In [7] a non-linear map was introduced which takes a deforma-
tion of an embeddable CR-structure to a linear operator. Call this
operator valued function E(®). One can show that the deformation
defined by @ is embeddable if and only if the rank of E(®) is finite. If
E(®) = 0 then ® defines a “stably embeddable perturbation.” This
means that if X is any CR-embedding of (M, 3?) then (M, 82) can
be realized as a small perturbation of X (M). In this paper we show
that the infinite order formal solutions of the equation

E(i £®,) ~ 0
i=1

are precisely the infinite order formally embeddable structures.

In addition we have defined a second order differential operator P
whose range consists of first order deformations which are tangent to
V. Introducing an L2-structure on M to define adjoints we obtain a
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system of equations:

(K') s

which we think provides a reasonable three dimensional analogue of
Kuranishi’s system. As the system of equations, (K’) does not seem
to belong to any well understood class, its analysis will probably take
a long time to complete.

The solution space to the linearization around ® = 0 of (K')
has an interpretation as the first order embeddable deformations of
(M, 8?). The dimension of this space is a numerical invariant of the
CR-structure which we identify with the dimension of the space of
first order deformations of V. For dimensions greater than three a
similar result was proved by S.S.T. Yau, see [18].

In this lecture we briefly describe the notion of a formal deforma-
tion of a subvariety of C¥ and the analogous concept of a formally
embeddable CR-structure. We then state several results relating the
two concepts. This leads to a normal form for formally embeddable
CR-structures modulo a natural equivalence relation as well as the
non-linear system (K'). Detailed proofs of these results can be found
in [4]. '

2. ALGEBRAIC DEFORMATION THEORY

Suppose that V' is an analytic surface with strongly pseudoconvex
boundary in CV and the components of f = (fi,..., f) are genera-
tors for Z,. We assume that these functions are analytic in an open
set U containing V and globally generate Zy (U') for any open set
U' withU' cc U. In general these generators satisfy relations of the
form

f-p=)_fm=0.
i=1

Here p = (p1,...,Pm) is an m-tuple of functions analytic in a neigh-
borhood of V. The germs of these relations define a coherent sheaf
which we denote by R(F).
Our discussion of deformation theory follows that presented in [17].
A deformation of V over a base T" is an analytic space V together
with a flat map
m:V—T

and an isomorphism of analytic spaces

i:V — 77 1(0).



