Dynamic
Multilevel Methods
and the o
Numerical Simulation
of Turbulence

Thierry Dubois
Francois Jauberteau
Roger Temam




\‘/“J

D O

Dynamic Multilevel Methods and the
Numerical Simulation of Turbulence

THIERRY DUBOIS

Centre National de la Recherche Scientifique
and Université Blaise Pascal

FRANCOIS JAUBERTEAU

Université Blaise Pascal

ROGER TEMAM

Université Paris-Sud and Indiana University,
Bloomington

SRR

| CAMBRIDGE

UNIVERSITY PRESS

LA

E200100501




PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK  http: //www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA  http: //www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

(© Cambridge University Press 1999

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 1999
Printed in the United States of America
Typeset in Times Roman 10/13 pt. in IXTEX 2¢ [TB]

A catalog record for this book is available from
the British Library

Library of Congress Cataloging-in-Publication Data
Dubois, Thierry.
Dynamic multilevel methods and the numerical simulation of
turbulence / Thierry Dubois, Frangois Jauberteau, Roger Temam.
; cm.
Includes bibliographical references.
ISBN 0-521-62165-8 (hb)

1. Turbulence. 2. Navier-Stokes equations—Numerical solutions.
3. Differentiable dynamical systems. I. Jauberteau, Frangois,
1959- . II. Temam, Roger. III. Title.

QA913.D88 1999
532'.0527 - dc21 98-36472
CIP

ISBN 0 521 62165 8 hardback



Dynamic Multilevel Methods and the Numerical
Simulation of Turbulence

This book describes the implementation of multilevel methods in a dynamical
context, with application to the numerical simulation of turbulent flows. The
general ideas for the algorithms presented stem from dynamical systems theory
and are based on the decomposition of the unknown function into two or more
arrays corresponding to different scales in the Fourier space.

Before describing in detail the numerical algorithm, survey chapters, on the
mathematical theory of the Navier—Stokes equations and on the physics of the
conventional theory of turbulence, are included. The multilevel methods are
applied here to the simulation of homogeneous isotropic turbulent flows as well
as turbulent channel flows. The implementation issues are discussed in detail,
and numerical simulations of the flows cited above are presented and analyzed.
The methods have been applied in the context of the direct numerical simulation
and are therefore compared to such simulations.

This timely monograph should appeal to graduate students and researchers
alike, providing a background for applied mathematicians as well as engineers.



1
Preface

The purpose of these notes is to describe the implementation of multilevel
methods for the numerical simulation of turbulent flows. Multilevel methods
have proved to be a successful tool for the treatment on parallel computers
of large problems involving numerous scales, problems that now become ac-
cessible: wavelets, multigrid methods, hierarchical bases in finite elements,
and the numerical treatment of some heterogeneous media are examples of
multiresolution treatments of such problems.

However, in all the examples above the treatment has been most often a
“static”” one devoted to stationary problems. The utilization of multilevel meth-
ods for time-dependent problems in the context of a complex dynamics is rela-
tively unexplored, and this book is a small contribution to this vast and complex
subject.

The general ideas for the algorithms presented here stem from the dynamical
systems theory and are based on the decomposition of the unknown function into
two or more arrays corresponding to different scales in the Fourier space. These
subsets of unknowns are treated in differentiated ways adapted to the different
scales. Although the concepts of exact and approximate inertial manifolds and
the nonlinear Galerkin method underline the present study, we actually make
little use of these concepts, but retain and further develop the idea of decom-
posing the unknown function into different arrays with different magnitudes
and in treating the multilevel components differently and in an adaptive and
dynamical way.

The authors realize all too well how much remains to be done for the numeri-
cal simulation of turbulent flows, from the laboratory prototype to the industrial
models and to geophysical flows. Nevertheless we believe that multilevel meth-
ods are a necessary and useful tool for the treatment on parallel computers of
the large problems involving numerous scales. From the mathematical and
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X Preface

numerical analysis point of view, we believe also that new chapters of numeri-
cal analysis will have to be written in relation with the multilevel treatment of
large evolutionary problems.

Although these notes do not pretend, in any way, to give a definitive answer
to the hard problem of turbulence, the authors hope that they can help bring
a different perspective in numerical simulations. To make the book accessible
to a broader audience, we have included some survey chapters or sections, in
particular on the mathematical theory of the Navier-Stokes equations and on
the physics of the conventional theory of turbulence.

Bloomington, Clermont-Ferrand,
Faris, Stanford,
January 1998
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Introduction

In various engineering and environmental problems, there is a serious need to
calculate turbulent flows. However, the Reynolds numbers for these applica-
tions are usually very high and the geometry is complicated. Generally, for
problems in industry or meteorology, the Reynolds numbers are greater than
several millions. High Reynolds numbers imply that a wide range of scales
takes place between the small and large scales of the flow. Furthermore the
characteristic times of the small scales are small by comparison with that of the
large ones (see Chapter 2). Hence, in order to compute accurately all the scales
of a turbulent flow, we must take a grid with very small mesh size, and a very
small time step. The direct numerical simulation (DNS) of the turbulence is not
possible at present time on problems of industrial interest, even on the most
powerful computers currently available. The number of degrees of freedom
needed for DNS can be estimated as N" >~ Re’iz/ 4, with n =2 or 3 the space
dimension, Re; being the integral scale Reynolds number. As for the time step,
we have At ~ ReZ"/ * (see Chapter 4).

Direct numerical simulations of homogeneous turbulent flows have been
performed extensively to increase the understanding of the mechanisms involv-
ing the small-scale structures (intermittency). Results of numerical simulations
provide many different ways for investigating turbulent flows. Indeed, impor-
tant quantities, such as high order correlations, cannot be easily evaluated in the
laboratory. By direct numerical simulation, various details of the small scale be-
havior can be obtained. Moreover, by comparing results of direct and modeled
simulations, the validity and the limits of the closure models can be estimated.
Hence, the modeling can be improved and new models can be developed.

In homogeneous turbulence, no boundary layers are present, nor complex
geometry. Therefore reasonably high Reynolds numbers can be reached and
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Xiv Introduction

the turbulence can be fully developed. Orszag and Patterson (1972) have con-
ducted DNS of homogeneous turbulence at Reynolds number Re;, based on
the Taylor microscale, smaller than 30 and with a resolution of 323. Siggia
and Patterson (1978) have performed DNS at Reynolds number Re;, >~ 40 with
a resolution of 323. At this Reynolds number there is no separation between
the energy-containing eddies and the small (dissipative) scales. During the
subsequent decade, the increase of computer capacities allowed simulations
at higher Reynolds numbers for which a small inertial subrange of the en-
ergy spectrum exists. Siggia (1981) studied the small-scale intermittency in
three-dimensional turbulence. He collected data related to intermittency such
as the flatness and, among many other quantities, those related to the first and
second velocity derivatives. Kerr (1985) has presented various simulations cor-
responding to Reynolds numbers Re;, from 18 to 83 with a number of modes
varying from 323 to 128°. For the 128 simulation, the inertial range extended
over five modes. The author studied in detail the velocity derivative statistics
and the statistics of a passive scalar. Correlations of fourth and higher orders
were presented. She, Jackson, and Orszag (1988) studied the dependence of
the skewness and flatness factors of the velocity derivatives upon the differ-
ent scales of motion. The skewness factor is found to be a large-scale property,
while the flatness factor depends mainly on scales lying in the dissipation range.

Vincent and Ménéguzzi (1991) obtained a simulation at Re, of the order of
150 which corresponds to 240 unknowns. This result was obtained on a Cray-
2 using the four available processors. In this case, the inertial range extended
over one decade. The authors confirm that the probability distribution of the
velocity derivative is strongly non-Gaussian and that it is close to an exponential
distribution. Finer resolutions, namely 5123 modes, have been more recently
reported by Chen et al. (1993) and Jiménez et al. (1993). These simulations
were obtained on massively parallel computers. Even more recently, a 10243
simulation was done on a cluster of workstations (Woodward et al. (1995)). In
Vincent and Ménéguzzi (1991), the authors reported several statistical quantities
and studied the spatial structure of the flow. A similar but more detailed analysis
was presented in Jiménez et al. (1993).

The choice of the number of unknowns that have to be retained in order to
accurately describe the turbulence statistics, such as the energy spectrum func-
tion and the high-order moments of the velocity and its derivatives, is of great
importance in DNS. In Kerr (1985), resolution refinement at fixed Reynolds
number was used in order to estimate the suitable mesh size. In Vincent and
Ménéguzzi (1991), the authors analyzed the transfer terms and the energy spec-
trum; in Jiménez et al. (1993) the effect of the resolution on the high order
statistics was measured. It appears that the cutoff wavenumber must be chosen
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of the order of 2/, where n is the Kolmogorov length scale. This results in
very strong computational restrictions on the size of the physical mesh and
therefore on the time step. Due to the k=3 decrease of the energy spectrum
function in the inertial range, most of the energy is concentrated in a few low
modes, so that most of the computational effort consists in computing very
small scales. Indeed, less than 2% of the computations are required in order
to compute the scales corresponding to wavenumbers nk < % In DNS, all
the scales (from the energy-containing to the dissipative ones) are computed
with the same numerical scheme. This does not take into consideration the fact
that the small and large scales have different physical characteristics. For in-
stance, the small scales are known to reach a statistically steady state much
faster than the large ones (see Batchelor (1971), Orszag (1973)).

Although much (indeed, most) computational effort is devoted to the small
scales, the interesting structures are often the large scales of the flow, since
they contain most of the kinetic energy and they control physical properties
like turbulent diffusion of momentum or heat. Yet, for high Reynolds numbers,
the energy containing eddies and the Kolmogorov scales are well separated.
Furthermore, the small scales are more homogeneous and isotropic. In fact,
various experiments and simulations have shown the universal character of the
small scales. So one may want to model the small structures so as to properly
describe their action on the large structures without fully computing them.
Different types of modeling have been developed. They are based on some
decomposition of the flow field

u=1u+u 0.1)

where U is the averaged velocity and u’ is the fluctuating counterpart. The
purpose is to estimate @ without fully computing w’. This problem being not a
closed one, we must use a model of closure for the terms depending on w’. The
models that are usually proposed depend on the definition of the averaging and
on the choice of the closure hypothesis. Many models make an eddy-viscosity
assumption (Boussinesq’s hypothesis). If the average satisfies the Reynolds
conditions, the term to model is the Reynolds stress tensor. Several models such
as the zero-equation model (mixing length), the one and two-equation models
(K —¢ model, K —e model) have been proposed to model the Reynolds stress
tensor (see Chapter 4). Other models, like the two-point closure models, are
based on modeling the two-point correlation tensor or its spectral representation
(energy spectrum tensor), in order to provide more details than the Reynolds
stress models. Totally different approaches to this modeling problem include the
renormalization-group (RNG) methods and the PDF models (see Chapter 4).
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In large eddy simulations (LESs), the approach is slightly different. Instead
of computing the mean flow and related quantities as in Reynolds-stress clo-
sures, LES models compute the large scales of the flow while modeling the
effect of the subgrid scales on the resolved (large) ones. Therefore, a low-
dimensional dynamical system is resolved, while in the case of Reynolds-stress
closures, a steady equation is most often solved. The LES approach then aims
to reproduce the dynamic behavior of the flow, at least of some quantities;
such information is necessary in some problems, such as acoustic ones. The
decomposition u = W+ u’ is chosen to separate the small and large scales con-
tained in the velocity field. This separation is achieved by using a filter function
(see Chapters 4 and 6). The fluctuating part u’ is called the subgrid-scale (SGS)
velocity, and the term to model in the filtered equations is the subgrid stress ten-
sor. The first approach for this closure, introduced by Smagorinsky, involves an
eddy-viscosity assumption. However, other models, such as the scale-similarity
model and the linear combination model (LCM), have been proposed (see
Chapter 4) to overcome some deficiencies of the Smagorinsky model. Gener-
ally, LES models consist in computing the large scales of motion, containing
most of the energy (80% of the total energy). So LES models provide a more
accurate description of the flow, since more scales are retained. However, if
k. is the cutoff wavenumber in the energy spectrum, a backscatter transfer,
due to the nonlinear interaction with modes near k., appears. We speak of an
inverse error cascade, corresponding to a decorrelation between two different
realizations of the flow that differ initially only on the small scales. The errors
in the modeling of the small scales will gradually contaminate the larger scales
through this error cascade.

The Kolmogorov theory of turbulence is based on phenomenological con-
siderations and uses little information concerning the Navier—Stokes equations
(see Chapter 2). On the contrary, the mathematical theory of the Navier—Stokes
equations is aimed at studying mathematical properties of the solutions (see
Chapter 1). In space dimension 2, the mathematical theory of the Navier—Stokes
equations is quite complete in the sense that there is a satisfactory and coher-
ent set of results on existence of solutions, uniqueness, regularity, continuous
dependence on the data, and so on. No such thing is available for the actual
three-dimensional (3D) flows, and there are still several gaps in the mathemat-
ical theory of the three-dimensional Navier-Stokes equations. The main issue
for the mathematical theory in space dimension 3 is whether the enstrophy or,
equivalently, the maximum of the magnitude of the velocity vector can become
infinite at certain places and at certain times for a flow.

For the mathematical study of turbulence, the conventional approach is based
on a statistical study of the flow (see Chapter 2), using ergodicity assumption.
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Another approach for turbulence is the dynamical system approach, with the
concept of attractor (see Chapter 5). The global attractor is a subset in the phase
space that attracts all orbits as ¢ — oo. It is the mathematical object describing
the permanent regime, or large-time behavior. The study of the attractor and
its approximation yields some information on the properties of the flow. The
attractor has finite dimension. Hence, each orbit of the phase space converges
to a finite-dimensional set, and the corresponding permanent regime can be
described by a finite number of parameters, recovering in this way the fact pre-
dicted by Kolmogorov’s theory of turbulence that turbulent flows depend on a
finite number of degrees of freedom. The dimension of the attractor coincides
with the estimates of the number of degrees of freedom of a turbulent flow. To
approximate the attractor, several mathematical objects, such as inertial mani-
folds (IMs) and approximate inertial manifolds (AIMs), have been developed
(see Chapter 5). These concepts are based on the following decomposition of
the velocity field u into a large-scale and a small-scale component, or into a
low-frequency and a high-frequency component, of the type

u=y-+ z 0.2)

IM and AIM give an exact or approximate slaving law of z as a function of y,
namely ’

z(t) = P(y@)). (0.3)

The utilization of such decompositions of the vector field has led to new multi-
level schemes in numerical analysis (see for instance Foias, Manley, and Temam
(1987, 1988), Jolly and Xiong (1995), Jones, Margolin, and Titi (1995)). Fur-
thermore, for the practical utilization of these multilevel methods for the simu-
lation of turbulence, the need occurred to implement the decomposition (0.2) of
u in a dynamical adaptive way. The dynamical multilevel (DML) methodology
(see Chapters 8, 9, and 10) stems from theoretical properties of the decompo-
sition u = y + z of the solution of the Navier—Stokes equations, which is at
the origin of the construction of the AIMs. It is also related to multigrid meth-
ods (V-cycles). Encompassing these mathematical and numerical notions, the
DML methodology takes into account the fact that, in turbulent flows, the small
scales reach a statistically steady equilibrium faster than the large ones.

In LES models, the velocity fluctuation u’ is not resolved and the subgrid
stress tensor, representing the interaction between the resolved and the subgrid
scales, is modeled. In the DML methodology, the small scales z are com-
puted with less accuracy and are updated less often than in a DNS simula-
tion. Their approximate values are used to correct the dynamic behavior of the
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low-dimensional dynamical system corresponding toy (large scales). The DML
methods have been implemented and used only in the context of DNS, that is, all
physically relevant scales are computed. In such a case, the cutoff levels used
in the DML methodology to separate the small and large scales varies in time
so as to avoid energy accumulation near the cutoff levels, excessive dissipation,
or backscatter transfer. Fundamental in the DML methods is the strategy for
changing the cutoff level while time evolves. Indeed, it is important to control
the errors in order to not disturb the large scales for which the statistically steady
equilibrium is long to reach. The DML methods can be viewed as intermediate
methods between LES and DNS.

Two different type of turbulent flows are considered in this work, namely two-
and three-dimensional homogeneous turbulent flows (fully periodic flows) and
three-dimensional nonhomogeneous turbulent flows, more specifically flows in
an infinite channel. In the homogeneous case, the flow is forced in the large
scales in order to sustain the turbulence and to avoid a decay of the kinetic
energy. By integrating the discretized Navier—Stokes equations over a long
time interval (30 eddy-turnover times 7,.), a statistically steady state can be
reached. Therefore, the statistics are collected, and the steady states obtained
with different algorithms can be compared. DML simulations with different
parameters are compared with DNS ones at different resolutions, namely, nky €
[0.8, 1.6]. The effects of the DML method on the small scales are measured,
and the efficiency of the DML methodology in this context of direct simulation
is evaluated. The comparisons of the different simulations concerned global
quantities such as the kinetic energy; the energy dissipation rate; and statistical
properties of the flow such as the energy spectrum functions, the skewness
and flatness factors, higher-order moments, and the probability distribution
functions (see Chapter 10).

For the channel flow problem, the flow is sustained in the streamwise direc-
tion (x;) by applying a constant pressure gradient in that direction. A simulation
with the same configuration (i.e. the same channel lengths in the periodic di-
rections and the same Reynolds number) as in Kim, Moin, and Moser (1987)
is reported. The velocity—vorticity formulation of the Navier—Stokes equation,
leading to a fourth-order equation for the velocity in the direction normal to the
walls, is used. However, this formulation is discretized here in a different way
than in Kim, Moin, and Moser (1987). Indeed, instead of a tau Chebyshev ap-
proximation in the direction normal to the walls, a Galerkin basis formed with
Legendre polynomials has been implemented. Such basis is well suited for a
scale decomposition of the velocity field in the normal direction. The study
of multilevel schemes in the normal direction is under progress and will be
reported in further works. Here, a DML algorithm in the periodic directions is
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proposed, and it has been tested. Again, the statistically steady states reached by
the DNS and DML simulations are compared by analyzing different turbulent
statistics such as the mean flow properties, the root mean square of the velocity,
vorticity, and pressure fluctuations, the one-dimensional spectrum functions,
the Reynolds shear stresses, and the high-order moments of the velocity fluctu-
ations. The memory size required for DNS and DML spectral codes, as well as
the vectorization and parallelization (multitasking) performance, obtained on a
Cray YMP C90, are also compared. Furthermore, several quantities are com-
puted with the results of the DNS simulations for comparisons and to validate
the hypothesis of the DML methodology (see Chapters 8 and 9).

This book is organized as follows. In Chapter 1, the main mathematical
results on the Navier—Stokes equations are recalled and stated without proofs.
Chapter 2 concerns the theory of turbulent flows (statistical study) in the spirit of
the conventional theory of turbulence. In Chapter 3, DNS algorithms (spectral
methods) are described for homogeneous and nonhomogeneous turbulence.
The practical limits of DNS for these problems are discussed in Chapter 4.
Chapter 5 presents the theoretical results obtained by applying the dynamical
system approach to the study of turbulence. The main results are recalled:
attractor, inertial manifolds, approximate inertial manifolds. In Chapter 6, the
problem of the scale separation is studied in homogeneous and nonhomoge-
neous directions. In Chapter 7, the numerical analysis of an algorithm with
different treatments of y and z is conducted for a simple problem. In Chapters 8
and 9, the theory and algorithms of DML methodologies are presented. Further-
more several estimates are derived and used to motivate the multilevel strategy
on which are based the DML algorithms presented here. Different DML algo-
rithms are described, in the homogeneous and nonhomogeneous cases. Finally,
numerical results obtained with the DML methods and the comparison with
DNS results are presented in Chapter 10.
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