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Preface

The primary purpose of this book is the exposition of algorithms for solving
nonlinear programming (optimization) problems. This book also contains the
theory of nonlinear optimization, mostly concerned with the characteristics of
optimal points. An important subsidiary aim is the presentation of some
optimization models of real world problems that can be solved by nonlinear
programming methodology. After working in the field of algorithm develop-
ment for several years, I was disturbed by the number of bad mathematical
models of serious problems that were considered in the literature. In 1972 I
initiated a course, “Applications of Linear and Nonlinear Optimization The-
ory,” in the Department of Operations Research at the George Washington
University in order to teach mathematical modeling, that is, how to do it and
its limitations. This is the origin of the discussion in Chapter 1 of characteris-
tics of real world problems that prevent their representation as optimization
models. The students are given a structured way in which to analyze applica-
tion papers and to assess their relevance in solving the underlying problems.
The material in Chapter 1, the models that precede each major section of the
book, and papers gathered from the published literature constitute the subject
matter of the applications course.

The bulk of the material can be used for a traditional course in nonlinear
programming. There is a rigorous development of first- and second-order
optimality conditions. Algorithms are presented for optimization problems in
order of increasing complexity, that is, for single-variable problems, uncon-
strained n-variable problems, linearly constrained problems, and, finally, non-
linearly constrained problems. For the latter two categories, the components of
the algorithms are presented in general and then it is shown how classical
methods fit into the general framework. This is a departure from the usual way
of presenting algorithms—by author, with each subalgorithmic detail treated
as though it were intrinsic to the method, whereas in fact it is usually just a
replaceable part.

Some of the newer algorithms, multiplier (augmented Lagrangian) methods,
exact penalty function methods, and sequential linearization techniques are
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viii Preface

explained with the use of an idealized exact penalty function created by the
movement of a particle under different forces. It is my contention that many
algorithms can be motivated through the use of simple physical models, and
this approach is used in the development of Newton’s method for uncon-
strained and constrained optimization problems.

This book contains several topics not usually covered in books on nonlinear
programming. The future of nonlinear programming lies in the integration of
numerical techniques for solving systems of equations. Some preliminary
attempts to do this and the necessary background for understanding the
current literature are contained here.

There is no lack of algorithms for solving nonlinear programming problems,
as evidenced by the material in this book and in its references. Probably the
single most important thing, in addition to the primitive nature of the use of
matrix methods, preventing the automatic solution of nonlinear programming
problems is the lack of a computationally oriented way of representing
nonlinear functions. Chapter 3 is a summary of a new approach using
“factorable” functions to provide the interface between computer-coded algo-
rithms and the algebraic representation of nonlinear programming problems.
This new approach has a great variety of implications for other aspects of
nonlinear programming. One of these is evidenced in Chapter 18 on solving
nonconvex programming problems.

The field of nonlinear programming is vast, and no attempt has been made
to include all the developments to date or in progress. It would require a book
of several volumes to do this. In some cases, long proofs of important theorems
are omitted. Many of the topics covered are included because of my special
research interests. Basic or pioneering works are mentioned at the ends of
chapters, where a synthesis of the many contributing works is contained.

Much of the research that contributed to this book was sponsored by the
Army Research Office, the Office of Naval Research, the Air Force Office of
Scientific Research, the Department of Energy, and the National Bureau of
Standards. Their help is appreciated.

Many individuals have contributed to portions of the book, and their
contributions are noted at the appropriate places. I wish to thank Professor
William H. Marlow, Director of the Institute for Management Science and
Engineering, for creating an environment in which basic and applied research
could be carried out.

Professor Stephen M. Robinson was particularly helpful in the early stages
of this book: the material relating to the classical Newton’s method in Chapter
7 and several other contributions are due to him and are greatly appreciated.

GARTH P. McCoRMICK
Washington, D.C.
December 1982



Use of Cross Referencing in This Book

Within each section important items, such as theorems, equations, and defini-
tions, are numbered sequentially. The numbers of the chapter and section
appear at the top of each page; thus 6.3 at the top of a page indicates that the
material appearing there is from Section 3 of Chapter 6. When reference is
made to an item within the same section, only the item number is used. If
the referenced item is in the same chapter but in a different section, both the
section and item numbers are used; thus [7.5] means item 5 of Section 7 of
the same chapter. When the item referenced is in a different chapter, all three
numbers are used; thus equation [2.7.5] indicates equation 5 of Section 7 of
Chapter 2.
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Notation

En
f(x0)

Vf(xo)

f"(x0)

V2f(x,)
A#‘
A+

(x',..., x™T, an n X 1 vector of variables
Euclidean n space

The 1 X n derivative vector of the function f evaluated at x,, that
is, the 1 X n vector whose jth component is 9f(x,)/dx’

The n X 1 gradient vector of f at x,, that is, the n X 1 vector
whose jth component is df(x,)/dx’ [note that f'(x,) =
VI (x)"]

The n X n Hessian matrix of f at x,, that is, the matrix whose
i, jth element is 8%f(x,)/dx’ dx/

The n X n Hessian matrix defined above

A pseudo-inverse of the matrix 4 (44%4 = A)

The Penrose—Moore generalized inverse of the matrix 4
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Basics

Chapter 1 has enough material to provide the basis for a course in the
applications of nonlinear programming. An introduction to simple nonlinear
programming problems using as a basis the classical diet problem begins the
book in Section 1.1. Section 1.2 contains a discussion of the characteristics that
must be present in real world problems in order for them to be legitimately
modeled as optimization problems. In Section 1.3 is an elementary discussion
of the mathematical characteristics of optimization problems. With this back-
ground a moderately sophisticated reader should be able to understand pub-
lished nonlinear programming models and much of the algorithmic and
theoretical material in this book.

In order to provide the reader with a complete understanding of the proofs
of theorems and some of the more complicated algorithms, Chapter 2 contains
the necessary mathematical background: functional analysis, convexity, and
linear algebra.

Chapter 3 contains a discussion of factorable functions. This is a new topic
oriented toward providing a computationally valuable way to represent com-
plicated functions of several variables.






The Nature of
Optimization Problems

1.1 GENERAL REMARKS

The study of nonlinear programming begins with algebra. It begins with the
notion that it is useful to express a relationship between measurable attributes
symbolically rather than writing down all or some of the possible associated
values. The relationship between the area of a triangle and its height and base
can be expressed by the examples in Table 1.1.1.

Use of algebra simplifies this task by providing a shorthand way of
expressing the relationship. Let 4 denote the area of a triangle, let x denote the
base length, and y the height. Then 4 = xy /2.

This is an example of an explicit functional relationship. Such relationships
are useful as models of the real world and are helpful in making decisions. The
question of how many pounds of grass seed to buy for a triangular plot with a
base of 20 ft and a height of 30 ft can be answered by computing the area and
knowing the recommended coverage per square foot.

Even this simple mathematical model of the situation is subject to criticism.
No plot of ground is actually triangular and slope considerations have not
been taken into account. The uneven surface of the ground may require more
grass seed in some places, less in others—better to get an experienced
gardener, let him look at it, and buy the quantity he suggests. In the absence of
an experienced gardener, though, most people would accept the basic model as
an aid in deciding on how much grass seed to buy.

Indeed, all mathematical models can be challenged. It is not difficult to
present arguments stating that models oversimplify the complexity of the real
situation, both with respect to the operating laws of cause and effect and also
their inclusiveness; still it is useful in many cases to abstract the important
elements of a real world problem and model them. The hard question for the
model builder is whether or not the important elements of a real world problem
can be quantified.

Mathematical model building is not an activity that is carried on by just a
few abstractly oriented persons. Most people implicitly develop mathematical
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4 The Nature of Optimization Problems 1.1

Table 1.1.1 Associated Values of the Area, Height, and Base Length of a Triangle

Length of Base Height of Triangle Area of Triangle
(in.) (in.) (in.?)
0:2 7.0 0.7
5.6 10.0 28.0
1.25 4.4 2.75

models and make decisions based on rather simple assumptions. Questions of
how long to cook a roast, how much fertilizer to apply to a crop, how long it
will take to drive a car from point 4 to point B, at what speed to take a
picture, and the number of calories to eat in a day are all answered in some
form by the use of a mathematical model.

One difference between a good and a bad model is whether or not the
proper functional relationships are used. Consideration of the rate of heat
transfer and the shape of a roast implies that the cooking time should not vary
directly with the number of pounds. The average speed of a car on a trip is not
the average of the speeds on its segments. A crop’s yield per acre as a function
of the fertilizer applied follows an exponential form.

Mathematical models arise from a variety of sources and needs. Tolstoy
resorted to the theory of integral calculus to explain how the aggregate of
Russian souls could combine to defeat Napoleon.

Mathematical model building has often come under attack, but like the
praise of its advocates, the attacks are many times undifferentiated. Obviously
in some circumstances model building is relevant, and working with a model
can help one predict, suggest controls, or simply visualize phenomena that
would not be possible to understand intuitively from the mass of detail in the
real world situation. In other cases the models are constructed (it is sometimes
felt) to avoid looking at the relevant complexities; these models fail to describe
the real world situation accurately. There are many situations that are impossi-
ble to model and where functional relationships do not exist. In this book
critical questions will be asked whenever models are presented, whether or not
development of the model is warranted. The reader should be critical, but
should also look for situations where models are warranted.

As a simplification, it can be stated that optimization problems are posed in
one of two modes: the descriptive or the prescriptive (normative). As a simple
example of the former and to illustrate in concrete terms what an optimization
problem is, consider the following.

[1] Example. Among all the triangles with a base of 8 in. and an area of at
least 12 in.?, find that one with the smallest perimeter.

In setting up an optimization problem the “variables” or “unknowns” of
the problem must be specified. Often there is a choice among the quantities to



1.1 General Remarks 5

consider as variables. In this example enough variables are needed to com-
pletely specify a triangle. Since the base is fixed, knowing the values of any two
other independent quantities of the triangle will specify it. Let x denote one
side of the triangle and let y denote the height. These are the variables of the
optimization problem. Other quantities that are fixed inputs to the problem are
called parameters.

There are an infinite number of values of x and y for which the associated
triangle has an area of at least 12 in.2. It is intuitively clear that for some
values, call them X and y, the perimeter of the triangle is smallest. The
requirement that the triangle have an area of at least 12 in.2 is stated
algebraically as 8y/2 > 12 or, more simply, y > 3. From Figure 1.1.1 arises
another natural constraint, that x > y hold.

A functional relationship must be derived by relating the problem variables
and parameters to the perimeter of the triangle. From two applications of the
Pythagorean theorem (referring again to Figure 1.1.1) the length of the third
side is

1,2
{(+s- -
The perimeter to be minimized is then

8+ x + {yz + [8 — (x2 _yz)1/2]2} 1/2-

Combining this information results in the following optimization problem:
find values (X, y) that

1,2
[2] minimjzef(x,y)=8+x+{y2+ [8— (x2_y2)1/2]2} ’
(x,»)

subject to the constraints that

(3] y=z3

T

8 —|  Figure 1.1.1 Geometry of triangle example.



