
Signals, Systems, and Transforms

Leland B. Jackson

TN911 928093

noissima

SIGNALS, SYSTEMS,

AND

TRANSFORMS

E9260331

Leiand B. Jackson

University of Rhode Island

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts • Menlo Park, California • New York

Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn

Sydney • Singapore • Tokyo • Madrid • San Juan

Figure 1.5 on page **5** is from *Nursing the Critically Ill Adult*, Third Edition, by Nancy Meyer Holloway. Copyright © 1988, Addison-Wesley Publishing Company, Health Sciences Division, Menlo Park, CA. Reprinted with permission.

Material in Section 8.1 of this text is taken largely from Section 4.4 of *Digital Filters and Signal Processing*, Second Edition, by Leland B. Jackson. Copyright © 1989, Kluwer Academic Publishers, Norwell, MA. Reprinted with permission.

Library of Congress Cataloging-in-Publication Data

Jackson, Leland B.

Signals, systems, and transforms/Leland B. Jackson.

p. cm.

Includes bibliographical references.

ISBN 0-201-09589-0

1. Signal processing. 2. System analysis. I. Title.

TK5102.5.J33 1990

621.382'2-dc20

90-31578

CIP

Reprinted with corrections April, 1991

Copyright © 1991 by Addison-Wesley Publishing Company, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

2 3 4 5 5 6 7 - MA - 939291

CONTINUOUS-TIME LINEAR TIME-INVARIANT SYSTEMS

Convolution
$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$
Causality
$$h(t) = 0, t < 0, \text{ and thus}$$

$$y(t) = \int_{-\infty}^{t} x(\tau)h(t-\tau) d\tau$$
Stability
$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$
Step response
$$\dot{s}(t) = \int_{-\infty}^{t} h(\tau) d\tau$$

PROPERTIES OF THE LAPLACE TRANSFORM

Definition	$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$	
Linearity	$ax_1(t) + bx_2(t) \leftrightarrow aX_1(s) + bX_2(s)$	$R'\supset R_1\cap R_2$
Time shift	$x(t-t_0) \leftrightarrow e^{-st_0}X(s)$	R' = R
Modulation	$e^{s_0t}x(t) \leftrightarrow X(s-s_0)$	$R' = R + \operatorname{Re}\{s_0\}$
Axis scaling	$x(at) \leftrightarrow \frac{1}{ a } X\left(\frac{s}{a}\right)$	R' = aR
Axis reversal	$x(-t) \leftrightarrow X(-s)$	R' = -R
Differentiation	$\frac{dx(t)}{dt} \leftrightarrow sX(s)$	$R'\supset R$
	$-tx(t) \leftrightarrow \frac{dX(s)}{ds}$	R' = R
Integration	$\int_{-\infty}^{t} x(\tau) d\tau \leftrightarrow \frac{1}{s} X(s)$	$R' \supset R \cap \operatorname{Re}\{s\} > 0$
Convolution	$x_1(t) * x_2(t) \leftrightarrow X_1(s)X_2(s)$	$R'\supset R_1\cap R_2$
Right-sided	$x(t) = 0, t < t_0 \leftrightarrow X(s)$	$R = \text{Re}\{s\} > \sigma_{\text{max}}$
Left-sided	$x(t) = 0, t > t_0 \leftrightarrow X(s)$	$R = \operatorname{Re}\{s\} < \sigma_{\min}$
Stable LTI system	$h(t) \leftrightarrow H(s)$	$R\supset \operatorname{Re}\{s\}=0$

PROPERTIES OF THE CONTINUOUS-TIME FOURIER TRANSFORM

Definition	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$
Linearity	$ax_1(t) + bx_2(t) \leftrightarrow aX_1(j\omega) + bX_2(j\omega)$
Time shift	$x(t-t_0) \leftrightarrow e^{-j\omega t_0}X(j\omega)$
Modulation	$e^{j\omega_0 t}x(t) \leftrightarrow X[j(\omega-\omega_0)]$
Axis scaling	$x(at) \leftrightarrow \frac{1}{ a } X\left(\frac{j\omega}{a}\right)$
Axis reversal	$x(-t) \leftrightarrow X(-j\omega)$
Duality	$X(jt) \leftrightarrow 2\pi x(-\omega)$
Differentiation	$\frac{dx(t)}{dt} \leftrightarrow j\omega X(j\omega)$
	$-jtx(t) \leftrightarrow \frac{dX(j\omega)}{d\omega}$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau \leftrightarrow \frac{1}{j\omega} X(j\omega) + \pi X(0) \delta(\omega)$
	$-\frac{1}{jt}x(t) + \pi x(0) \delta(t) \leftrightarrow \int_{-\infty}^{\infty} X(j\lambda) d\lambda$
Convolution	$h(t) * x(t) \leftrightarrow H(j\omega)X(j\omega)$
Multiplication	$x(t)p(t) \leftrightarrow \frac{1}{2\pi}X(j\omega) * P(j\omega)$
Conjugation	$x^*(t) \leftrightarrow X^*(-j\omega)$
Real signals	$\operatorname{Ev}\{x(t)\} \leftrightarrow \operatorname{Re}\{X(j\omega)\}$
	$\mathrm{Od}\{x(t)\} \leftrightarrow j \mathrm{Im}\{X(j\omega)\}$
	$Re\{X(j\omega)\} = Re\{X(-j\omega)\}$
	$\operatorname{Im}\{X(j\omega)\} = -\operatorname{Im}\{X(-j\omega)\}$
	$ X(j\omega) = X(-j\omega) $ $\angle X(j\omega) = -\angle X(-j\omega)$
Parseval's	
relation	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) ^2 d\omega$

SIGNALS, SYSTEMS, AND TRANSFORMS

To all my family

Preface

This book is intended as the text for a one-year introductory course in the theory of signals and linear systems at the third-year undergraduate level. It may also serve as the text for a one-semester or two-quarter course with appropriate selection of the topics to be covered. Both continuous-time and discrete-time signals and systems are included.

Two distinct approaches have evolved in the teaching of this subject area: (1) sequential coverage of continuous-time signals and systems and then of the corresponding discrete-time material and (2) integrated coverage of continuous-time and discrete-time material. In an effort to accommodate both approaches, Chapters 2 and 3 of this text are divided into Part A on continuous-time topics and Part B on discrete-time topics. Hence, to cover only continuous-time material at first, the instructor can utilize the Part A sections of Chapters 2 and 3 and then take up continuous-time Fourier and Laplace transforms in Chapters 4 and 5. The Part B sections of Chapters 2 and 3 on the corresponding discrete-time topics can then be assigned and covered before proceeding on to the discrete-time z and Fourier transforms in Chapters 6 and 7. On the other hand, if the earlier material is to be presented in an integrated manner, both Parts A and B of Chapters 2 and 3 can be assigned and covered before continuing on to subsequent chapters.

The Part A and Part B treatments are exactly parallel so that the student can refer back and forth between the continuous- and discrete-time material, thereby reinforcing what is common in the topics, while noting the differences.

Even for the integrated approach, a major departure here from several competing texts is that the Laplace transform is covered immediately following the Fourier transform for continuous-time signals, rather than after the discrete-time Fourier transform has also been covered. The author believes from his teaching experience that it is somewhat artificial to make the students wait for the Laplace transform when it follows so naturally after the Fourier transform. He has also found that the multiplicity of different Fourier representations for periodic and aperiodic discrete-time signals (DFS, DTFT, DFT) and the periodicity and aliasing of these transforms are quite confusing to students before they have studied the z transform, but not after. Hence the sequence of topics in Chapters 4 through 7 is the Fourier representation of continuous-time signals, the Laplace transform, the z transform, and the Fourier representation of discrete-time signals, in that order.

Another feature of the book is the considerable effort made to prepare the students to understand convolution and to implement it correctly. Most students can readily repeat that convolution involves "flipping one signal around and sliding it along," but too often they don't really know what that means. Therefore in Chapter 2 we spend substantial time studying modification of an independent variable and stress the difference between the functionals x() and x[], the functions x(t) and x[n], and the values $x(t_0)$ and $x[n_0]$. The student is then introduced to convolution purely as a mathematical operation, with many examples given for both continuous and discrete-time signals. The application of convolution to linear time-invariant systems follows in Chapter 3 and subsequent chapters, with many additional examples.

Other notable features of the book include the following:

- Among the examples presented are several that are given special emphasis because of their significance. These examples are called Applications and are listed as such in the Table of Contents.
- The fundamental applications of filtering, sampling, and modulation are integrated into the chapters on Fourier, Laplace, and z transforms, rather than being isolated in separate chapters.
- A chapter is included on state variables, with a section devoted to operational-amplifier networks that gives the students a chance to synthesize many useful analog filter networks and ties in nicely with their electronics courses.
- Problems are included to extend the concepts presented as well as to provide an opportunity to practice specific techniques. For instance, correlation functions are introduced and examined in Problems 2.21, 3.22, 4.24, 5.40, and 6.40.

The author is grateful to all those who have made suggestions and otherwise assisted him in this project, including Profs. Faye Boudreaux-Bartels, Steven Kay, Ramdas Kumaresan, Allen Lindgren, John Spence, Peter Swaszek, and Richard Vaccaro at the University of Rhode Island and Gerald Lemay at Southeastern Massachusetts University. The suggestions of Prof. Weiping Li of Lehigh University have been particularly helpful. I also appreciate the support and assistance of Tom Robbins, Eileen Bernadette Moran, Bette Aaronson, and Sarah Hallet at Addison-Wesley Publishing Company. Careful proofreading was contributed by Haiguang Chen and Su-Hsiu Wu at URI. Finally, my students in ELE313 and ELE314 have motivated this book and provided continuing feedback and support.

L. B. J.

DISCRETE-TIME LINEAR TIME-INVARIANT SYSTEMS

Convolution	$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$
Causality	h[n] = 0, $n < 0$, and thus
	$y[n] = \sum_{k=-\infty}^{n} x[k]h[n-k]$
Stability	$\sum_{n=-\infty}^{\infty} h[n] < \infty$
Step response	$s[n] = \sum_{k=0}^{n} h[k]$

PROPERTIES OF THE z TRANSFORM

	00	
Definition	$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$	
Linearity	$ax_1[n] + bx_2[n] \leftrightarrow aX_1(z) + bX_2(z)$	$R'\supset R_1\cap R_2$
Time shift	$x[n-n_0] \leftrightarrow z^{-n_0}X(z)$	$R' \supset R \cap$
		$0< z <\infty$
Modulation	$z_0^n x[n] \leftrightarrow X(z/z_0)$	$R' = z_0 R$
	$e^{j\Omega_0 n}x[n] \leftrightarrow X(ze^{-j\Omega_0})$	R' = R
Time reversal	$x[-n] \leftrightarrow X(1/z)$	R' = 1/R
Differentiation	$nx[n] \leftrightarrow -z \frac{dX(z)}{dz}$	R' = R
Convolution	$x_1[n] * x_2[n] \leftrightarrow X_1(z)X_2(z)$	$R'\supset R_1\cap R_2$
Accumulation	$\sum_{k=-\infty}^{n} x[k] \leftrightarrow X(z) \frac{1}{1-z^{-1}}$	$R'\supset R\cap z >1$
Causal signal	$x[n] = 0, n < 0 \leftrightarrow X(z)$	$R= z >r_{\rm max}$
Anticausal signal	$x[n] = 0, n > 0 \leftrightarrow X(z)$	$R = z < r_{\min}$
Stable LTI system	$h[n] \leftrightarrow H(z)$	$R\supset z =1$

此为试读,需要完整PDF请访问: www.ertongbook.com

PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

Definition
$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$
Linearity
$$ax_1[n] + bx_2[n] \leftrightarrow aX_1(e^{j\Omega}) + bX_2(e^{j\Omega})$$
Time shift
$$x[n - n_0] \leftrightarrow e^{-j\Omega n_0}X(e^{j\Omega})$$
Modulation
$$e^{j\Omega_0 n}x[n] \leftrightarrow X(e^{j(\Omega - \Omega_0)})$$
Time reversal
$$x[-n] \leftrightarrow X(e^{-j\Omega})$$
Conjugation
$$x^*[n] \leftrightarrow X^*(e^{-j\Omega})$$
Differentiation
$$nx[n] \leftrightarrow j\frac{dX(e^{j\Omega})}{d\Omega}$$
Convolution
$$x_1[n] * x_2[n] \leftrightarrow X_1(e^{j\Omega})X_2(e^{j\Omega})$$
Multiplication
$$x_1[n]x_2[n] \leftrightarrow \frac{1}{2\pi}X_1(e^{j\Omega}) \otimes X_2(e^{j\Omega})$$
Accumulation
$$\sum_{k=-\infty}^{n} x[k] \leftrightarrow \frac{1}{1-e^{-j\Omega}}X(e^{j\Omega}) + \pi X(e^{j\Omega}) \delta(\Omega)$$
Real signals
$$\text{Ev}\{x[n]\} \leftrightarrow \text{Re}\{X(e^{j\Omega})\}$$

$$\text{Od}\{x[n]\} \leftrightarrow j \text{Im}\{X(e^{j\Omega})\}$$

$$\text{Re}\{X(e^{j\Omega})\} = \text{Re}\{X(e^{-j\Omega})\}$$

$$\text{Im}\{X(e^{j\Omega})\} = -\text{Im}\{X(e^{-j\Omega})\}$$

$$|X(e^{j\Omega})| = |X(e^{-j\Omega})|$$

$$\angle X(e^{j\Omega}) = -\angle X(e^{-j\Omega})$$
Parseval's
$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(e^{j\Omega})|^2 d\Omega$$

0-P82P0-L05-0 N8ZI

Contents

PREFACE	xi
CHAPTER 1	1
Overview of Signals and Systems	
Introduction	1
1.1 Signals	2
1.2 Systems	6
CHAPTER 2	9
Continuous-Time and Discrete-Time Signals	
Introduction	9
PART A Continuous-Time Signals	10

	De la Cantinuous Timo Signals	10
2.1		18
2.2	AND THE PARTY OF T	24
2.3	Continuous-Time Convolution	24
	PART B Discrete-Time Signals	31
2.4	Basic Discrete-Time Signals	31
2.5		36
2.6	Discrete-Time Convolution	42
2.0		49
	Summary	49
	Problems	12
		FO
CHAPT	ER 3	59
Linear	Time-Invariant Systems	
	Introduction	59
		(0)
	PART A Continuous-Time Systems	60
3.1	System Attributes	60
3.2		65
3.3	Properties of LTI Systems	72
3.4	Differential Equations and Their Implementation	78
	PART B Discrete-Time Systems	90
3.5	System Attributes	90
3.6	Discrete-Time LTI Systems	94
3.7	Properties of LTI Systems	103
3.8	Difference Equations and Their Implementation	109
	Summary	120
	Problems	121
CHAPT	ER 4	137
Fourie	r Analysis for Continuous-Time Signals	
	•	4
22	Introduction	137
4.1	The Eigenfunctions of Continuous-Time LTI Systems	138
4.2	Periodic Signals and the Fourier Series	140
4.3	The Continuous-Time Fourier Transform	153
4.4	Properties and Applications of the Fourier Transform	161
	APPLICATION 4.1 Amplitude Modulation	163
	APPLICATION 4.2 Sampling	169

4.5		176
	APPLICATION 4.3 Filtering	188
	Summary Problems	194 194
	Toolems	194
СНАРТ	ER 5	209
The La	place Transform	9
	Introduction	209
5.1	The Region of Convergence	210
5.2		220
5.3	Properties of the Laplace Transform	224
5.4	The System Function for LTI Systems	232
5.5	Differential Equations	239
	APPLICATION 5.1 Butterworth Filters	246
5.6	Structures for Continuous-Time Filters	255
	Summary	263
	APPENDIX 5A The Unilateral Laplace Transform	264
	APPENDIX 5B Partial-Fraction Expansion for	
	Multiple Poles Problems	266
	Troblems	270
СНАРТ	ER 6	285
The z	Transform	
	Introduction	285
6.1	The Eigenfunctions of Discrete-Time LTI Systems	286
6.2	The Region of Convergence	288
6.3	The Inverse z Transform	296
6.4	Properties of the z Transform	306
6.5	The System Function for LTI Systems	314
6.6	Difference Equations	322
	APPLICATION 6.1 Second-Order IIR Filters	334
6.7	APPLICATION 6.2 Linear-Phase FIR Filters	338
U. /	Structures for Discrete-Time Filters Summary	343
		349
	- Tunsioim	350
	APPENDIX 6B Partial-Fraction Expansion for Multiple Poles	252
	Problems	352 356
		2.20

CHAPTER 7		371
Fourie	r Analysis for Discrete-Time Signals	
	Introduction	371
7.1	The Discrete-Time Fourier Transform	372
7.2		376
	APPLICATION 7.1 Windowing	380
7.3	Sampling	388
	Filter Design by Transformation	401
7.5	\$200 PER	406
	APPLICATION 7.2 FFT Algorithm	416
	Summary	420
	Problems	421
CUART	ern o	425
CHAPT	ER 8	435
State \	/ariables	
	Introduction	435
8.1	Discrete-Time Systems	436
8.2	Continuous-Time Systems	448
8.3	Operational-Amplifier Networks	457
	Summary	465
	Problems	465
DIDI IO	CDADLIV	470
RIRLIO	GRAPHY	473
INDEX		477

1

Overview of Signals and Systems

INTRODUCTION

The theory, analysis, and design of signals and systems play a major role in almost all branches of electrical engineering and in many other engineering and scientific fields as well. Examples of electronic systems include radio and television, telephone networks, sonar and radar, guidance and navigation, laboratory instrumentation, industrial control, biomedical instrumentation, remote (satellite) sensing, communications intelligence, military surveillance and fire-control, seismic analysis, radio astronomy, and on and on. Mechanical system examples include vibration analyzers, suspension systems, microphones and hydrophones, loudspeakers, accelerometers, and so forth. Signals are the input, output, and internal functions that these systems process or produce, such as voltage, pressure, displacement, or intensity. Often the independent variable for these signal functions is time, but it can also be distance, angle, etc., especially for two-dimensional signals such as images.

Our study in this text thus has two major components—corresponding to *signals* and *systems*, respectively—but there are many points of commonality, or overlap, between them. Traditionally the corresponding