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Preface

Engineers, scientists, and applied mathematicians are habitually curious about
behavior of physical systems. More often than not they will model the system
and then analyze the model, hoping to expose the system’s dynamic secrets.
Traditionally, linear methods have been the norm and nonlinear effects were
only added peripherally. This bias for linear techniques arises from the consum-
mate beauty and order in linear subspaces and the elegance of linear indepen-
dence is too compelling to be denied. And the bias has been, in the past, for-
tified by the dearth of nonlinear procedures, rendering the study of nonlinear
dynamics untidy. But now a new attractiveness is being conferred on that non-
descript patchwork, and the virtue of the hidden surprises is gaining deserved
respect.

With a wide variety of individual techniques available, the student and
the engineer as well as the scientist and researcher, are faced with an almost
overwhelming task of which to use to help achieve an understanding sufficient
to reach a satisfying result. If linear analysis predicts system behavior suffi-
ciently close to reality, that is delightful. In the more likely case where nonlin-
ear analysis is required, we believe this text fills an important void.

We have tried to compile and bring some order to a large amount of
information and techniques, that although well known, is scattered. We have
also extended this knowledge base with new material not previously published.
Included in these new procedures and techniques are Chapter 2 (finding analytic
solutions to nonlinear differential equations), Chapter 7 (investigations into the
stability of digital recursion and understanding the events of numerical analysis
which lead to higher-order furcations, chaos, etc.), and Chapter 9 (a tutorial
which shows how to use the desk top personal computer to analyze systems).

Finding a closed form solution to nonlinear differential equations has long
been a study in frustration. In Chapter 2 we extend the class of equations with
known solutions by use of a variety of transformations. Relationships between
the known solutions to linear and nonlinear differential equations and those of
derivable classes of other nonlinear differential equations are developed yielding
a means of solving these new equations.
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There is no guarantee that the appropriate transformation exists (it is, after
all, nonlinear), so the analyst often turns to digital simulation, in the hope that
it will adequately approximate the solution. A tutorial is supplied in Chapter 9
which enables the modeler to simulate his system on a spread-sheet-equipped
personal computer. It presents methods of approximating ordinary differential
equations with finite difference equations which are then easily recursed to pro-
vide solutions which are rapidly plotted.

A topic of increasing interest which naturally evolves from recursions is
chaos. In Chapter 7 we have presented some of its aspects, notably the stability
of recursions starting with Jacobi’s iteration of linear algebraic equations, then
the nonlinear Mechanic’s rule for extracting square roots, followed by the fur-
cations in the logistics map, and finally, recursions of Lin’s method for extract-
ing quadratic factors from polynomials, showing convergence, divergence, fur-
cations and essential chaos.

Just as there is a little order in the nonlinear world, the order of our pre-
sentation is not sacrosanct. Having taught this material repeatedly in courses
involving Nonlinear Controls or System Dynamics, we are comfortable with
this order, but leave it to the reader to select his own. Only an introductory
knowledge of differential equations and linear controls is presumed, and, the
material can be used in either undergraduate or graduate curricula.

The completion of the manuscript required more sacrifice and pain than
we’d ever imagined at its initiation. We could not have finished without the
unflinching support of our wives, Janet Kolk and Ellen Lerman, the encourage-
ment and helpful criticism of Dr. Dan DeBra of Stanford University, and Pro-
fessor George Murphy of Lowell University, nor the unselfish assistance of
Mrs. Lee Brown in preparing the manuscript. We thank them sincerely, one
and all.

W. RICHARD KoLK
Portland, Connecticut

ROBERT A. LERMAN
West Hartford, Connecticut
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Introduction

Linearity—A Shangri-la

1.1 WHY LINEARITY?

Linear theory is a formidable modeling tool which is unmatched by its nonlinear
counterpart. While, as engineers, we are fully aware of Mother Nature’s ubig-
uitous nonlinearity, we are nevertheless lured by the power of eigenvalues to
describe a system’s dynamics. Their compact explanation of an aircraft’s Dutch
Roll or the attenuation in an operational amplifier is satisfying and conclusive.
That they are unique to the linear world and do not exist in Mother Nature’s
Kingdom is something we tend to overlook, making us susceptible to the illu-
sion that her Kingdom is truly linear. As Amnold Tustin' expresses it . . .

. . closed sequence systems are delightfully simple to understand and—
even more important—very easy to handle in exact mathematical terms.
Because of this, most introductory accounts of control systems either bra-
zenly or furtively assume that all such systems are linear . . .’

Linearity invades much of our daily life. The change in our pocket is the
same no matter how the coins are counted. If an aspirin is good, then two are
better where we vaguely equate better to ‘‘twice-as-good.’” There is, of course,
a loose contradiction that the whole bottle can be harmful, but this is not con-
sidered a rational option. Real and complex numbers add like change, as do
vectors. The world abounds in linear things, but occasionally we encounter
unusual quantities like nonplanar Eulerian angles which ‘‘add’’ differently, ac-
cording to their order. The Gas Law is an awkward relation between pressure,
density, and temperature, and Maxwell’s equations are even more challenging.
These are, however, a distinct minority, or so it would seem, because by and
large our formal engineering training follows the safe path of linear analysis.

'Automatic Control, A Scientific American Book, Simon and Schuster, 1955.
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1.2 FROM WHENCE LINEARITY

The linear problem has evolved as dominant in both algebra and differential
equations because the proposition of linearity bears a myriad of analytic meth-
ods that, proof upon proof, has produced a vast body of analysis.

Chronologically, algebra developed before differential equations, yet it is
interesting that linear algebra, per se, is a relatively recent development, while
linear ordinary differential equations have been studied for 300 years. Linear
algebraic equations were not intentionally avoided prior to 1950; on the con-
trary, most of what then rapidly developed as linear algebra was well-known
hundreds of years before, but it resided in that amorphous aggregate known
simply as algebra. World War II fostered an interest in mini-max problems,
Von Neuman developed game theory, and computers made linear pogramming
practical. By then Heaviside’s operational calculus had been clothed in the re-
spectability of LaPlace Transforms, which reduced differential equations to
polynomials. These factors were recognized by the mathematics community,
which responded by sifting out the linear part of what was already available and
created linear algebra.

1.3 WHAT IS LINEARITY?

Starting with common addition, a commutative binary rule of combination, any
two quantities can be ‘‘added.’’ Next, consider a special process, P, which can
operate on either or both the quantities x and y. P can be a function, an oper-
ation, a transformation, or a mapping, but what makes it special is its capability
to distribute over addition,

P(x +y) = P(x) + P(y)

This defines a linear process, and any process failing the equality is by
default nonlinear. It follows that for a, a scalar, and scalar multiplication de-
fined through the continuum of real numbers by successive additions,

P(ax) = aP(x)
An interesting observation is the provable fact that among all of the real
continuous? algebraic functions, f: R = R, imposing linearity on f; that is,
fe+y) =fx) +f(y) forx,yeR
the only thing f can be is scalar multiplication, so,
f(x) = kx forkeR

Thus, the only continuous algebraic function permitted within the order-
liness of linearity is a straight line through the origin. The dogma of linearity
eschews quadratics, cubics, polynomials in general, and even straight lines with
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a dc-component. This abstract and perhaps stark approach to linearity points up
its rather confining aspect by conceding that a single unique function from among
an infinity of applicants is the sole survivor.

A more pleasing approach is usually followed, in which some as yet un-
known function of specific variables is hypothesized. With little Justification,
the function is assumed to have a Taylor series expansion about an operating
point (often selected to be the origin), displacements from which are argued to
be sufficiently small to truncate their products and powers. The result is iden-
tical to the formal imposition of linearity, producing a linear combination of the
displacements, which represents the total derivative with partials evaluated at
the operating point.

An example is the aerodynamic force on a body which is influenced by
many variables, such as air density p, speed v, temperature T, viscosity &,
Mach number M, and Reynolds number Re, which is expressed as,

Force = f(p, v, T, 3, M, Re)

The procedure expresses the increment of force in terms of variable increments.
A linear combination of perturbations

AForce = (3f/dp)Ap + (8fldv)Av + BfIOT)AT + (9f109)AY
+ (3floM)AM + (3fldRe)ARe + - - - + [Higher order

terms (HOTs), i.e., products and powers of perturbations]

where the partials are evaluated as scalars at an operating point, a direct con-
sequence of discarding HOTs.
1.4 THINGS LINEAR OR NOT LINEAR

Typically the linear process, P, is one of the familiar operations, normally oc-
curring in well-behaved engineering problems, a few of which are listed in
Table I.1.

TABLE I-1  Some Linear Processes

Scalar multiplication ax +y) = ax + ay
Differentiation dx + y) = dx) + d(y)
Integration fG+ydi=fxd+ [y
Real (imaginary) part Re(x + y) = Re(x) + Re( y)
Fourier (Laplace) transforms Fix + y) = F(x) + F(y)

’Here *‘continuous’’ means differentiable and Taylor series-expandable, thus avoiding the undif-
ferentiable functions of Bolzano and Weierstrasse, which have not yet appeared in engineering.
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There are more nonlinear than linear processes but their abundance goes
unnoticed simply because they are not as easily manipulated. A few are listed
in Table I-2.

TABLE I-2 Some Nonlinear Processes

Circular (elliptic) functions Sin (x + y) # Sin (x) + Sin (y)
Sign of SGN (x + y) # SGN (x) + SGN (y)
Logarithm (exponential) In(x +y) # In(x) + In(y)

Powers (roots) @x +»*#F @* + ("

Magnitude (phase) [x + y| # |x| + |y

1.5 OUR SHANGRI-LA

One need not look far for evidence of Mother Nature’s nonlinearity. Some of
the greatest minds in the physical sciences have ratified that premise with the
Gas Law, both Newton’s second law and his Law of Gravitation, and Ber-
noulli’s flow equation to name a few. That each expresses a form of nonlinearity
is simply Her disregard of conformity.

But what if She were linear? Would it be helpful? As things stand, if our
system doesn’t work we can blame it on nonlinearity. Were it linear, however,
we could analyze it, understand its function, and avoid frustration. And engi-
neering would cease to exist because our Hiltonian Systems would all have
known outputs, and malfunctions just couldn’t occur.

In the following chapters, we investigate the nonlinear world to introduce
a range of techniques which provide comfort, useful tools, and additional in-
sights.



Chapter 1
Four Interesting Equations

1.0 THE EQUATIONS

Four differential equations, (i)-(iv), are presented to show that the consummate
uniformity of linear equations is not shared by nonlinear equations

i+x=0 ()
i+ (x| =0 (i)
[#] +x =0 (iif)
|| + |x| =0 (iv)

which is illustrated by addressing three essential features of the solutions.

1. The Method of Solution: The solution to (i), while easily found today,
was obscure to its discoverer who knew only algebra and differentia-
tion. Take away the number e, integration, the logarithmic and ex-
ponential functions, and the method is no longer straightforward. And,
whatever method is employed, its existence is implied.

2. Existence of a Solution: Whether a solution exists is (or should be) of
fundamental importance in engineering. 1 + 2 = 0 is not an equation
but a contradiction, unless the addition is modulo 3. Likewise a dif-
ferential ‘‘equation’’ can be a disguised but unforgiving contradiction
as in (iv). Linearity bestows the guarantee that a solution exists—a fact
that is often taken for granted, and inappropriately extended to nonlin-
ear equations.

3. Uniqueness of a Solution: If one solution is found, can there be others?
Or, is this the only solution? If so, the solution is unique as in (i) and
(ii). Should there be more than one, as in (iii), the solutions are not
unique. And if there is no solution, the question of uniqueness is moot
as in (iv)
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Figure 1-1. Solutions to four equations.

1.1 THE SOLUTIONS—A PREVIEW

The solutions to (i)-(iv) are shown in Fig. 1.1. The unifying relations are the
real exponentials, e *‘, one or both of which satisfy the equation if it can be
satisfied.

1.2 SOLVING EQUATION (i): x + x = 0

Four methods of solution are presented, each with its own interpretation. It is
helpful to slightly generalize the equation by defining a scaled time, T.

T = t/\
$0dT = NdT, and thus x’ + Ax = 0, where x' = dx/dT

1.2.1 Method 1—Separating Variables

Ordinary differentials, dx and d T, follow the rules of common algebra, yielding
dx/x = —\dt
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From elementary calculus, the left side integrates to the logarithm, the inverse
of which is the exponential.

Remark: We have, here, presumed knowledge of both the logarithm and
exponential, as well as integration. Were we ignorant of these
(as was the first person to formulate the equation), it would be
necessary to develop them from only those facts expressed by
the equation.

The equation’s solution is:
Inx = =T + ¢

where ¢y = In x,, or
g = g e o ~iNF
where ¢ = xy = .

This is plotted for N = +1 [Figure 1.1(a)], where the entire solution
plane x vs. ¢ or x vs. T is included in the set of all solutions. There are no
regions omitted, and so we confidently assert that the solution exists every-
where.

But is there another solution which the method neglected to expose? The
general question of existence and the related question of uniqueness are dis-
cussed in Section 1.7, where it is established that this solution passes the suf-
ficiency tests for existence and uniqueness throughout the entire x-T plane. A
property of all linear ordinary differential equations with constant coefficients
is the existence and uniqueness of solutions, making them a special target of
analysis.

1.2.2 Method 2—Identity Under Differentiation

If in the generalized form of equation (i), we choose A = —1, then x’ = x,
which asks for a function that reproduces itself under differentiation. Such a
property is displayed by the exponential function, e’

It is noteworthy that this function can be designated as the operation which
inverts the logarithm. That it is a shorthand notation for an infinite series is
unnecessary to the solution of the equation. The important point is to recognize
that differentiation is the exponential function’s identity element.

1.2.3 Method 3—Recursive Approximation

Following Polya’s prompt, we guess the answer. Thereafter the guess is refined
using the equation to produce a better guess. Hopefully, successive iterations



