FER # B FWEO RKE

YSTEM [IDENTIFICATION
THEORY AND APPLICATION

dit NI B

National Defense Industry Press



REIHRIBIC R FE

SYSTEM IDENTIFICATION THEORY AND APPLICATION

FEHR KA ABE 4%

R S

- JEAt .



EBERS B (CIP) 8
REPREIR RN E/EFR, KB R 25

%, —dtz . B Tk i Ak, 2011. 2

ISBN 978-7-118-07230-3

I.O%... 1.0%...Q%...0%... M.O%K
GEPHR —FSC IV.@N945. 14

rh & A< B 508 CIP $iEA% 7 (2011) 58 008049 5

@ oAz oo WA
ACEHEEX LRl 23 5 BRBI4RHS 100048)
[ B Tl RS ER AR T ER R
HHEBELE

Fras 787X 1092 1/16 EP3 19Y5 ¥ 446 T
201142 B4 1SS 1 REDR]  EP%E 1—1000 F TEH 48. 00 JT

(FBWMANERIR, RUEAFRABR)

EBRFHE: (010)68428422 BFFHRE . (010)68414474
RIFAEE. (01068411535 £ 4% . (010)68472764



FORWORD (B =)

System identification, state estimation and control theory are three inter-
connected fields of modern cybernetics. System identification and state esti-
mation cannot be developed without control theory, but applications of con-
trol theory are hardly done without system identification and state estimation.

System identification mainly investigates how to determine the mathe-
matical model of a system and its parameters, it is a subject used widely, its
theory is increasingly matured, and its practical applications have been ex-
tended over many fields. At present the research on theory of system identifi-
cation is more and more deep, and its applications in aeronautic engineering,
astronautic engineering, marine engineering, engineering control, biology,
medical science, environment improvement, hydrology, social economics and
so on are more and more extensive.

This book mainly introduces basic principle and applications of system
identification. Whole book contains 14 chapters. Chapters 1 to 4 are intro-
duction, commonly used input signals for system identification, classical i-
dentification methods of linear system, and canonical expression of dynamic
systems. They mainly review and introduce some basic knowledge about sys-
tem identification. Chapters 5 to 12 are least-squares identification, maximum
likelihood identification, identification methods of time-varying parameters,
identification of multi-input multi-output systems, some other kinds of identi-
fication methods, establishment of time series models, identification of sys-
tem structure, and identification of closed-loop system. They introduce often-
used basic methods of system identification, and they are main content of this
book. Chapters 13 and 14 introduce application of system identification to pa-
rameter identification of aircraft and application of neural network to system

identification.
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Chapters 1 to 12 are compiled and written by professor Li Yanjun, Chap-
ters 13 and 14 are compiled and written by professor Zhang Ke, and associate
professor Yu Ruixing participates in compilation, charting, revision and oth-
ers of whole book.

Heartfelt thanks to the Teaching Affairs Office, the Postgraduate School
of Northwestern Polytechnic University, which have given warm support to
publication of this book. If you find some inappropriate points in the book,

please give us your advice.

Composers
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Chapter 1 Introduction

System identification, state estimation and control theory are three interconnected
fields of modern cybernetics. System identification and state estimation cannot be devel-
oped without control theory, but applications of control theory are hardly done without
system identification and state estimation. As the complexity of controlled plant increa-
ses, the applications of control theory become more and more extensive. However, its
practical applications cannot get out the mathematic model of controlled plant. When
discussing the linear system theory, the optimal control theory and the optimal filtering
theory in other courses, we always assume that the mathematic models of the systems
are known. Some mathematic models of control systems can be derived by theoretical
analysis methods, for example, the mathematic models of airplane motion and missile
motion in general may be more precisely derived based on mechanical principle. Al-
though the mathematic models of the airplane and the missile may be more precisely de-
rived by theoretical analysis methods, their model parameters vary with flight altitude
and flight velocity. In order to implement the adaptive control, parameters of the mod-
els should be continuously estimated in flight processes of the airplane and the missile.
For some controlled plants, such as the chemical production process and so on, it is dif-
ficult to derive their mathematic models using the theoretical method due to their com-
plexities. Sometimes we can know the general forms of their mathematic models and
their part of parameters, sometimes we cannot know even the general forms of their
mathematic models, thus the problem how to determine the mathematic models of the
systems and their parameters is proposed, which is so-called the system identification
problem.

System identification is a subject used widely, its theory is increasingly matured,
and its practical applications have been extended over many fields. At present the con-
trolled plants need to establish mathematic models and to use these mathematic models
to determine the optimal control decisions not only in engineering but also in other
fields, such as biology, ecology, medical science, astronomy, atmosphere pollution, so-
cial economics and so on. Since the systems in above fields are complicated, persons of-
ten have understood less, even hardly, the structures of the systems and the mechanism
to govern the motion of the systems, so it is impossible to obtain the mathematic models
by use of theoretical analysis method, and the mathematic models are determined only
using observed data. Therefore, the system identification has attracted persons’ atten-
tion. At present the research on the system identification theory is more and more deep,
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and its applications in aeronautic engineering, astronautic engineering, marine engineer-
ing, engineering control, biology, medical science, environment improvement, hydrolo-
gy and social economics are more and more extensive.

As it is to determine the mathematic model of the system according to the experi-
mental data of the system and there must exists an actual system, so the system identifi-
cation is to establish a mathematic model for an existent system. However, when we de-
sign the system, the system still does not exist, thus it is impossible to determine the
mathematic model by means of the system identification method. Under this situation
we have no choice but to establish the mathematic model by use of theoretical analysis
method, even a very glancing mathematic model also is very necessary. Using the math-
ematic model established by means of theoretical analysis method, we can do some simu-
lations by use of computer and can get many useful results, which can provide scientific
basis for design of the system. Therefore, when we discuss the system identification, we
cannot deny the importance of the theoretical method for establishing the mathematic model.

In this chapter we shall mainly introduce some basic concepts which include model-
ing method, definition of identification, error criterion, content and classification of

identification and so on.

1.1 Classification of Mathematic Models of
Systems and Modelling Methods

1.1.1 Signification of Model

So called model is that the essentially partial information of an actual system is sim-
plified to a useful description form. It can be used to describe the motion law of the sys-
tem, and it is an objective portrayal or an epitome of the system, and is a powerful tool
to analyze the system, to predict and to control dynamic characteristics of the system.
However, what part of an actual system ever is essential and what part is nonessential,
which depends on the investigated problem. For example, when investigating the dy-
namic characteristics of the missile in flight process, we often neglect the affections of
the high-frequency element and the nonlinear factor in the missile system, and reduce
the whole system to a second-order or third-order system. When deriving the guidance
law, we may also regard the missile as a particle for the convenience of implementing the
guidance law in engineering. This shows that the contents reflected by model are differ-
ent for its different objectives to be used.

For an actual system a model cannot consider all factors. In this sense so-called
model then is an approximate description of the system according to its objective to be
used. Of course, the higher the precision requirement of the model is, the more compli-
cated the model is. In contradiction to this, if the precision requirement of the model is
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suitably decreased, which only considers the main factors and neglects the subordinate
factors, the model would become simple. Therefore, when model of an actual system is
established, there exists contradiction between precision and complicacy, so to find a

compromise between them often is a key to establish model of an actual system.
1.1.2 Representation Forms of Models

Models usually are of the following representation forms:

(1) Intuitive model. It indicates that the character of the system is directly stored
in the human brain in the non-analytic form and the variation of the system is controlled
by human intuition. For example, driver drives motor, director directs fighting, which
depends on this sort of intuitive models.

(2) Physical model. It indicates a replica to miniaturize an actual system based on
the principle of similitude, or a kind of physical simulation for the actual system. For
example, wind-tunnel model, water-tunnel model, heat-transfer model, dynamic simu-
lation of electrical power system and others, all belong to physical models.

(3) Chart model. The behavior of the system is represented by the form of a graph
or a table, such as step response, impulse response, frequency characteristic and so on,
they are also called non-parametric model.

(4) Mathematic model. It reflects behaviors of an actual system in the form of
mathematic structure. Usually used mathematic models are algebraic equation, differen-
tial equation, difference equation, state equation, transfer function, nonlinear differen-
tial equation, distributed parameter equation and so on. These mathematic models are
also called parametric equation. After determining order and parameters of the model,

the mathematic model would be also determined.
1. 1.3 Classification of Mathematic Models

There are many classification methods for mathematic models. Familiar one is clas-
sified by continuous and discrete, time-invariant and time-varying, centralized parameter
and distributed parameter, which have been much introduced in the courses such as the
linear system and so on, here we do not repeat them again. They can also be classified
by linear and nonlinear, dynamic and static, determinate and stochastic, macro and mi-
cro.

(1) Linear model. Linear model is used to describe the linear system. Its remarka-
ble specialty is to satisfy the principle of superposition and the uniformity. That is, to
satisfy the following operations:

(o1 taz)x = arx+azx
ai (a'zx) =103 (alx)
a(z+y) =amx+ay
where x and y are state-space variables of the system, a; and a; are operators acting on x
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and y respectively.

(2) Nonlinear model. Nonlinear model is used to describe the nonlinear system,
and it in general does not satisfy the principle of superposition.

(3) Dynamic model. Dynamic model is used to describe relations among variables of
the system located in the transient process. In general it is a function of time.

(4) Static model. Static model is used to represent relations among variables of the
system located in steady state (all derivatives of variables are equal to zero). In general
it is not a function of time.

(5) Determinate model. The output response of the system described by determi-
nate model is unique and determinate after its states are determined.

(6) Stochastic model. After states of the system described by stochastic model are
determined, its output response still is not determinate.

(7) Macro model. Macro model is used to investigate the macro phenomena of an
object. In general it is described by simultaneous equations or integral equation.

(8) Micro model. Micro model is used to investigate the motion law of micro unit
inside object. In general it is described by differential equation or difference equation.

In addition, when discussing linear and nonlinear problems, we should note the fol-
lowing two differences.

(1) Difference between the system linearity and the linearity with respect to para-
metric space: If output of the model is linear with respect to input, the model is called
having system linearity. If output of the model is linear with respect to parametric
space, the model is called having linearity with respect to parametric space. For exam-
ple, for model y=a-+bx+cax?, output y is nonlinear with respect to input x but linear
with respect to parameters a,b and ¢, i. e. , the model is not the system linearity but the
linearity with respect to parametric space.

(2) Difference between essential linearity and essential nonlinearity: If an original
nonlinear model may be transformed into a linear model by suitable mathematic transfor-
mation, the original model is called the essential linearity. Otherwise the original model

is called the essential nonlinearity.
1.1.4 Basic Methods to Establish Mathematic Model

Establishment of mathematic model usually needs to adopt two basic methods such
as theoretical analysis and experiment at method.

1) Theoretical analysis method

Theoretical analysis method is also called the mechanism analysis method or the
theoretical modeling. This method mainly uses mathematic methods to derive and to es-
tablish mathematic model of the system via analysis of motion law of the system based
on some known laws, theorems and principles such as principle of mechanics, biological
laws, Newton theorems, energy balance equation, heat transfer and mass transfer prin-

4



ciple and so on,

Theoretical analysis method is only applicable to modeling of simpler system, and
designer should more distinctly understand the mechanism of the system. This modeling
method has large restriction for a more complicated actual system, because the theoreti-
cal modeling has to propose some reasonable simplification assumptions for the investi-
gated plant, otherwise the problem would become too complicated. However, if these
simplification assumptions are wanted to accord completely with practical situations, it
often is quite difficult.

2) Experimental method

In general input and output of a system can always be measurable. Since dynamic
characteristics must be revealed in these input and output data, so information of these
input and output data can be used to establish mathematic model of the system. This
modeling method is exactly the system identification,

As compared with theoretical method, an advantage of the experimental method is
that the mechanism of the system need not be deeply understood, and its shortage is
that a suitable experiment must be designed to gain large amount of information re-
quired, but design of a suitable experiment often is difficult. Therefore, when establis-
hing a specific model, we often combine the theoretical analysis method with the meas-
urement method, that is, the part whose mechanism is known adopts the theoretical
analysis method, but the part whose mechanism is unknown adopts the measurement

method.
1.1.5 Basic Principles Followed for Modeling

(1) Modeling objective should be definite, because for different modeling objec-
tives, different modeling methods would be adopted.

(2) Physical concepts of the model should be clear.

(3) System should be identifiable, i. e. , structure of the model is reasonable, the
input signal is persistently exciting, and the amount of data is sufficient. )

(4) The modeling should accord with the parsimony principle, namely the number

of parameters of the model to be identified should be as small as possible.
1.2 Definition, Content and Procedure of Identification

1.2.1 Definition of Identification

Many scholars have defined the identification. In the following we shall introduce

several typical and applicable definitions.
(1) Identification is to determine a model being equivalent to the measured system

from a set of given model sorts based on input and output data.



(2) Identification problem may be summed up in a kind of calculation which uses a
model to express essential characteristic of an objective system (or a system to be con-
structed) , and this model is used to express the understanding of the objective system as
a useful form,

This definition of identification emphasizes a very important concept: Final model
only should express the essential characteristic of the dynamic system, and it should be
expressed as a suitable form. This implies that we do not desire to acquire an exact
mathematic description of a real physical system, and that what we want is only an ap-
plicable model.

(3) Identification has three factors—data, model type and criterion. Identification

is to select a model best fitting to data from a set of model types according to a criterion.
1.2.2 Content and Procedure of Identification

From above definitions we can see that the identification is to use measured input
and output data (they often contain noises) to select a model best fitting with the meas-
ured data from a set of model sorts according to the selected criterion. In the following
we shall introduce procedure and method of the identification.

(1) Understanding target of identification. To understand final applied target of the
model is very important, because it will determine type of model, requirement of preci-
sion and identification algorithm to be used.

(2) Mastering a priori knowledge. Before identifying system, it should be as more
as possible to master a priori knowledge of the system, for example, nonlinearity of the
system, time-varying or time-invariant, proportional or integral characteristic, time
constant, transient time, cut-off frequency, time-delay characteristic, static amplifying
times, noise characteristic, operational environment and so on. The a priori knowledge
will play a directive role in primary selection of mathematic model sort and design of ex-
periment for identification. ‘

(3) Utilizing a priori knowledge to predict and choose mathematic model sort of the
identified system, and determine prior assumed model.

(4) Design of the experiment, including selecting experimental signal, sampling pe-
riod, datum length and so on, and noting down input and output data. If the system is
continuously operating and does not allow adding experimental signal, it has to use nor-
mal operating data for identification.

(5) Preprocessing of data. The input and output data often contain direct-current
(DC) component or low-frequency component, and it is difficult to eliminate their influ-
ence on precision of identification using any identification algorithm. High-frequency
components of data will have disadvantageous influence on identification. Therefore, we
should do such preprocessing of the input and output data as zero-equalization and elimi-

nating high-frequency components. Better preprocessing would obviously increase the
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