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Preface

In mechanical engineering, the needs for design analyses increase and diversify
very fast. Our capacity for industrial renewal means we must face profound issues
concerning efficiency, safety, reliability and life of mechanical components. At the
same time, powerful software systems are now available to the designer for tackling
incredibly complex problems using computers. As a consequence, computational
mechanics is now a central tool for the practising engineer and is used at every
step of the designing process. However, it cannot be emphasized enough that to
make a proper use of the possibilities offered by computational mechanics, it is of
crucial importance to gain first a thorough background in theoretical mechanics.
As the computational process by itself has become largely an automatic task, the
engineer, or scientist, must concentrate primarily in producing a tractable model
of the physical problem to be analysed. The use of any software system either
in a University laboratory, or in a Research department of an industrial company,
requires that meaningful results be produced. This is only the case if sufficient effort
was devoted to build an appropriate model, based on a sound theoretical analysis
of the problem at hand. This often proves to be an intellectually demanding task,
in which theoretical and pragmatic knowledge must be skilfully interwoven. To
be successful in modelling, it is essential to resort to physical reasoning, in close
relationship with the information of practical relevance.

This series of four volumes is written as a self-contained textbook for engin-
eering and physical science students who are studying structural mechanics and
fluid—structure coupled systems at a graduate level. It should also appeal to engin-
eers and researchers in applied mechanics. The four volumes, already available
in French, deal respectively with Discrete Systems, Basic Structural Elements
(beams, plates and shells), Fluid—Structure Interaction in the absence of perman-
ent flow, and finally, Flow-Induced Vibrations. The purpose of the series is to
equip the reader with a good understanding of a large variety of mechanical sys-
tems, based on a unifying theoretical framework. As the subject is obviously too
vast to cover in an exhaustive way, presentation is deliberately restricted to those
fundamental physical aspects and to the basic mathematical methods which con-
stitute the backbone of any large software system currently used in mechanical
engineering. Based on the experience gained as a research engineer in nuclear
engineering at the French Atomic Commission, and on course notes offered to
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2nd and 3rd year engineer students from ECOLE NATIONALE SUPERIEURE
DES TECHNIQUES AVANCEES, Paris and to the graduate students of Paris
VI University, the style of presentation is to convey the main physical ideas and
mathematical tools, in a progressive and comprehensible manner. The necessary
mathematics is treated as an invaluable tool, but not as an end in itself. Consider-
able effort has been taken to include a large number of worked exercises, especially
selected for their relative simplicity and practical interest. They are discussed in
some depth as enlightening illustrations of the basic ideas and concepts conveyed in
the book. In this way, the text incorporates in a self-contained manner, introductory
material on the mathematical theory, which can be understood even by students
without in-depth mathematical training. Furthermore, many of the worked exer-
cises are well suited for numerical simulations by using software like MATLAB,
which was utilised by the author for the numerous calculations and figures incor-
porated in the text. Such exercises provide an invaluable training to familiarize the
reader with the task of modelling a physical problem and of interpreting the results
of numerical simulations. Finally, though not exhaustive the references included
in the book are believed to be sufficient for directing the reader towards the more
specialized and advanced literature concerning the specific subjects introduced in
the book.

To complete this work I largely benefited from the input and help of many
people. Unfortunately, it is impossible to properly acknowledge here all of them
individually. However, I wish to express my gratitude to Alain Hoffmann head
of the Department of Mechanics and Technology at the Centre of Nuclear Studies
of Saclay and to Pierre Sintes, Director of ENSTA who provided me with the
opportunity to be Professor at ENSTA. A special word of thanks goes to my
colleagues at ENSTA and at Saclay — Ziad Moumni, Laurent Rota, Emanuel de
Langre, Ianis Politopoulos and Alain Millard — who assisted me very efficiently in
teaching mechanics to the ENSTA students and who contributed significantly to the
present book by pertinent suggestions and long discussions. Acknowledgements
also go to the students themselves whose comments were also very stimulating
and useful. I am also especially grateful to Professor Michael Paidoussis from
McGill University Montreal, who encouraged me to produce an English edition of
my book, which I found quite a challenging task afterwards! Finally, without the
loving support and constant encouragement of my wife Frangoise this book would
not have materialized.

Francgois Axisa
August 2003



Introduction

To understand what is meant by structural elements, it is convenient to start by
considering a whole structure made of various components assembled together with
the aim to satisfy various functional and cost criteria. Depending on the domain
of application, the terminology used to designate such assemblies varies; they are
referred to as buildings, civil engineering works, machines and devices, vehicles
etc. In most cases, the shapes of such structures are so complicated that the appro-
priate way to make a mathematical model feasible, is to identify simpler structural
elements, defined according to a few generic response properties. Such a theoret-
ical approach closely follows the common engineering practice of selecting a few
appropriate generic shapes to build complex structures. Since the architects and
engineers of the Roman Empire, two geometrical features have been recognized
as key factors to save material and weight in a structure. The first one is to design
slender components, that is, at least one dimension of the body is much less than the
others. From the analyst standpoint this allows to model the actual 3D solid by using
an equivalent solid of reduced dimension. Accordingly, one is led to distinguish
first between 1D and 2D structural elements. The second geometrical property of
paramount importance to optimise the mechanical resistance of structural elements
is the curvature of the equivalent solid. Based on these two properties structural
elements can be identified as:

Straight beams, modelled as a one-dimensional and rectilinear equivalent solid.
Plates, modelled as a two-dimensional and planar equivalent solid.

Curved beams, modelled as a one-dimensional and curved equivalent solid.

B W=

Shells, modelled as a two-dimensional and curved equivalent solid.

The second volume of this series deals with modelling and analysis of the mech-
anical responses of such structural elements. However, this vast subject is restricted
here, essentially, to the linear elastodynamic domain, which constitute the corner-
stone of mathematical modelling in structural mechanics. Moving on from discrete
systems to deformable solids, as material is assumed to be continuously distributed
over a bounded domain defined in a 3D Euclidean space, two new salient points
arise. First, motion must be described in terms of continuous functions of space and
then appropriate boundary conditions have to be specified in order to describe the
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mechanical equilibrium of the solid boundary. That mastering the consequences of
these two features in structural modelling is by far not a simple task can be amply
asserted by recalling that it progressed, along with the necessary mathematics, step
by step over a long period lasting essentially from the eighteenth to the first half
of the twentieth century. Apart from the concepts and methods inherent to the con-
tinuous nature of the problem, those already described in Volume 1, to deal with
discrete systems keep all their interest, in particular the concept of natural modes of
vibration and the methods of modal analysis. Actually, in practice, to analyse most
of the engineering structures, it is necessary to build first a finite element model,
according to which the structure is discretized into a finite number of parts, leading
to a finite set of time differential equations. The latter can be solved numerically
on the computer, either by using a spectral or a time stepping method.

Chapter 1 reviews the fundamental concepts and results of continuum mechanics
used as a necessary background for the rest of the book. Major points concern the
concepts of strain and stress tensors, the formulation of equilibrium equations,
using the Newtonian approach and Hamilton’s principle, successively. Then, they
are particularized to the case of linear elastodynamics, producing the Navier’s
equation which govern the elastic waves in a solid. The concept of natural modes
of vibration in a solid is introduced by solving the Navier’s equations in terms of
harmonic waves and accounting for the reflection conditions at the solid boundary.
Finally, the Saint-Venant’s principle is used as a guiding line to model a solid as a
structural element.

Chapter 2 presents the basic ideas to model beam-like structures as a 1D solid;
the starting point is to assume that the beam cross-sections behave as rigid bodies.
Here, modelling is restricted to the case of straight beams and the 1D equilibrium
equations, including boundary conditions, are derived by using the Newtonian
approach, i.e. by balancing directly the forces and moments acting on a beam
element of infinitesimal length. Study is further particularized to the case of
linear elastodynamics producing the so called vibration equations. Presented here
in their simplest and less refined form, they comprise three uncoupled equations
which govern stretching, torsion and bending, respectively. The lateral contraction
induced by stretching, due to the Poisson ratio is neglected, which is a realistic
assumption in most engineering applications. According to the Bernoulli-Euler
model, coupling of bending with transverse shear strains is negligible, which is
a reasonable assumption if the beam is slender enough. Concerning torsion, in
the case of noncircular cross-sections they are found to warp in such a way that
torsion rigidity can be considerably lowered with respect to the value given by a
pure torsion model. Warping induced by torsion is classically described based on
the Saint-Venant model. The chapter is concluded by presenting a few problems of
thermoelasticity and plasticity to illustrate further the modelling process required
to approximate a 3D solid as an equivalent 1D solid.

In Chapter 3, the problem of modelling straight beams is revisited and com-
pleted by presenting a few distinct topics of theoretical and practical importance.
At first, Hamilton’s principle is used to improve the basic beam models estab-
lished in Chapter 2, by accounting for the deformation of the cross-sections and the
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effect of axial preloads on beam bending. Then, the weighted integral equations of
motion are introduced as a starting point to introduce various mathematical concepts
and techniques. They are used first together with the singular Dirac distribution,
already introduced in Volume 1, to express the equilibrium equations in a uni-
fied manner, independently from the continuous or discrete nature of the physical
quantities involved in the system. As a second application of the weighted integral
equations, the symmetry properties of the stiffness and mass operators are demon-
strated, based on the beam operators. Finally, weighted integral equations together
with Hamilton’s principle give us a good opportunity to present an introductory
description of the finite element method.

Chapter 4 is devoted to the modal analysis method, which is a particularly
elegant and efficient tool for modelling a large variety of problems in mechanics,
independently of their discrete or continuous nature. At first, the natural modes
of vibration of straight beams are described. Then they are used as convenient
structural examples to present several aspects of modal analysis, focusing on those
specific to the case of continuous systems. In particular, the criteria to truncate suit-
ably the modal series are established and illustrated by several examples. Finally, the
substructuring method using truncated modal bases for describing each substruc-
ture is introduced and illustrated by solving a few linear and nonlinear problems
involving intermittent contacts.

Chapters 5 and 6 deal with thin plates described as 2D solids by assuming that
strains in the thickness direction can be neglected. Plates are characterized by a plane
geometry bounded by edges comprising straight and/or curved lines. Chapter 5
is concerned with the in-plane solicitations and responses, where the part is played
by the so called membrane components solely. Chapter 6 is concerned with the
out-of-plane, or transverse, solicitations and responses, where the part is played by
the flexure and torsion components and the in-plane preloads. Modelling is based on
the so called Kirchhoff—Love hypotheses which extend to the 2D case the Bernoulli—
Euler model of straight beam bending. Solution of a few problems help to concretize
the major features of plate responses to various load conditions. Amongst others,
enlightening results concerning the Saint-Venant principle invoked in Chapter 1,
are obtained by using the modal analysis method to the response of a rectangular
plate to an in-plane point load. On the other hand, the Rayleigh—Ritz discretization
method is described and applied to the semi-analytical calculation of the natural
modes of vibration of rectangular plates.

Chapters 7 and 8 are devoted to curved structures, namely arches and thin shells.
In curved beams and shells, tensile or compressive stresses can resist transverse
loads, even in the absence of a prestress field. This can be conveniently emphasized
by considering first simplified arch and shell models where bending and torsion
terms are entirely discarded, which is the object of Chapter 7. Though the range of
validity of the equilibrium equations obtained by using such a simplifying assump-
tion, is clearly limited to certain load conditions, it is believed appropriate to present
and discuss them in a rather detailed manner before embarking on the more elabor-
ate models presented in Chapter 8, which account for string or membrane stresses
as well as for bending and torsion stresses. Solution of a few problems concerning
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circular arches or rings and then shells of revolution, brings out that transverse
loads cannot be exactly balanced by tensile or compressive stresses in the case of
beams but they can in the case of shells. In any case, to deal with general loading
conditions, it is necessary to include bending and torsion into the equilibrium equa-
tions of arches and shells which is the object of Chapter 8, the last of this volume.
As illustrated by the solution of a few problems, the relative importance of the
various coupling terms arising in the arch and shell equations, largely depend on
the geometry of the structure and on the space distribution of the loads.

The content of the English version of the present volume is basically the same
as that of the first edition in French. However, it benefited from various signific-
ant improvements and complements, concerning in particular the reflection and
the guided propagation of elastic waves and the presentation of the finite element
method. Finally, a special word of thanks goes again to Philip Kogan, for checking
and rechecking every part of the manuscript. His professional attitude has contrib-
uted significantly to the quality of this book. Any remaining errors and inaccuracies
are purely the author’s own.

Frangois Axisa and Philippe Trompette
November 2004
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