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Preface

The art of war teaches us to rely not on the likelihood of the enemy’s
not coming, but on our own readiness to receive him; not on the
chance of his not attacking, but rather on the fact that we have made
our position unassailable.

SuN Tzu
The Art of War (500 BC)

The book is about the cryptanalytic attacks on RSA. RSA is the first work-
able and practical public-key cryptographic system, invented in 1977 and
published in 1978, by Rivest, Shamir and Adleman, then all at the Mas-
sachusetts Institute of Technology (MIT), and is still the most widely used
cryptographic systems in e.g., online transactions, emails, smartcards, and
more generally electronic and mobile commerce over the Internet, for which
its three inventors received the year 2002 Turing Award, a prize considered
to be the equivalent Nobel Prize for Computer Science. The security of RSA
relies on the computational intractability of the Integer Factorization Prob-
lem (IFP), for which, no efficient (i.e., polynomial-time) algorithm is known.
To get an idea how difficult the integer factorization is, let us consider the
following 2048 bits (617 digits) composite number, known as RSA-2048:

251959084756578934940271832400483985714292821262040320277771378360_
436620207075955562640185258807844069182906412495150821892985591491_
761845028084891200728449926873928072877767359714183472702618963750_
149718246911650776133798590957000973304597488084284017974291006424 _
586918171951187461215151726546322822168699875491824224336372590851_
418654620435767984233871847744479207399342365848238242811981638150_
106748104516603773060562016196762561338441436038339044149526344321 _
901146575444541784240209246165157233507787077498171257724679629263_
863563732899121548314381678998850404453640235273819513786365643912_
12010397122822120720357.

It is a product of two prime numbers. The RSA Data Security Incorpora-
tion currently offers a $200,000 prize for the first person or group finding
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its two prime factors. The basic idea of RSA encryption and decryption is,
surprisingly, rather simple:

C = M° (mod N), M =C% (mod N),

where N = pq with p and ¢ prime, M, C, e and d are the plaintext, ciphertext,
encryption exponent and decryption exponent, respectively. Note that e and d
must be satisfied with the condition that ed = 1 (mod ¢(N)), where ¢(N) =
(p —1)(g — 1) is Euler’s ¢-function. Let, for example, e = 65537, N be the
above mentioned number RSA-2048, and C the following number:

218598056144555493024019389629177159753811144728543422921500499254
181211032562087679022259831067991286101190897695119357754765408522._
697956638242922870637083231694404873947694078432775781998614979942_
064361669462614088852741600217233052059574880668463536030287944235_
822627708134997061064700771693064600712629809165416998449992925313_
374281387325903328781863209595468701560742767599157207314869432305_
892651836189508103764678721683360183118994273706398707795480800698_
501878875875150532123738006235671958527639461339868604410378449818_
383913059864587128396200112815989134558427750667427151537609736712_
04647757116059031684587.

To recover M from C' one requires to find d; to find d one needs to calculate
#(N); to calculate ¢(N) one needs to factor N. But unfortunately, factorizing
N is intractable when N is large (in the present case, N is a 2048-bit number,
which is far beyond the computing power of any factoring algorithm on any
computer at present); no polynomial-time factoring algorithm is known so
far. Thus, RSA is secure and C is safe since it is difficult to recover M from
C without factoring N. This is essentially the whole idea of RSA! One can
try to decrypt the above given RSA ciphertext C or try to factor the number
RSA-2048 in order to get an idea how difficult it is to break RSA or to factor
a large number.

The book consists of ten chapters. Chapter 1 presents some computational
and mathematical preliminaries, particularly the theory and practice of
tractable and intractable computations in number theory. Chapter 2 intro-
duces the basic concepts and theory of the RSA cryptographic system and its
variants in a broad sense. As the security of RSA is based on the intractabil-
ity of the Integer Factorization Problem (IFP), which is also closely related
to the Discrete Logarithm Problem (DLP), the attacks based on solutions
to IFP problem are discussed in Chapter 3, whereas the attacks based on
solutions to DLP problem are discussed in Chapter 4. As quantum algorithm
is applicable to both the IFP problem and the DLP problem, Chapter 5 will
discuss some quantum attacks on RSA via quantum order finding, quantum
factoring and quantum discrete logarithm solving. Chapter 6 concentrates on
some simple elementary number-theoretic attacks on RSA, including e.g., for-
ward attack, short plaintext attack, common modulus attack and fixed-point
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attack. It is common that to speed-up the computation of RSA encryption, a
short public exponent e is often used. It is also true for the RSA decryption
if a short private exponent d is used. However, the use of short exponent e
or d can be dangerous. So, in Chapter 7 we shall discuss some cryptanalytic
attacks on the short RSA public exponent e, whereas in Chapter 8 we shall
discuss some attacks on the short RSA private exponent d. In Chapter 9, a
completely different type of attacks, namely, the side-channel attacks on RSA,
are discussed. Unlike the mathematical/algorithmic attacks in the previous
chapters, side-channel attacks do not exploit the mathematical properties or
weakness of the RSA algorithm/system itself, but exploit the hardware im-
plementation issues of the system. In other words, these attacks are nothing
to do with the RSA algorithm/system itself but have something to do with
the hardware implementation of the RSA algorithm/system. Chapter 10, the
final chapter, presents some quantum resistant, non-factoring based crypto-
graphic systems as an alternative/replacement to RSA, such as lattice based
and code-based cryptosystems, so that once RSA is proved to be insecure,
there is an immediate replacement to the insecure RSA.

The book is self-contained and the materials presented in the book have
been extensively classroom tested for various courses in Cryptography and
Cryptanalysis at Aston and Coventry Universities in England, and the South
China University of Technology and Nankai University in China. Many parts
of the materials in the book have also been presented in seminars in various
universities around the world. Hence, the book is suitable either as a research
reference for public-key cryptology in general and for RSA cryptology in
particular, or as a graduate text in the field.
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The struggle between code-makers and code-breakers is endless. The
struggle between attacks and anti-attacks on RSA is also endless as soon
as RSA is till in use. New ideas and new attacks on RSA may be conceived
and invented anytime. So comments, corrections and suggestions on the book,
and new ideas and news attacks on RSA are particularly very welcome from
the readers, and can be sent to any one of my following three email addresses:
song.yan@beds.ac.uk, syan@math.mit.edu, or syan@cs.toronto.edu, so that I
can incorporate them into a future edition of the book. Thank you for your
help in advance.

CAMBRIDGE, MASSACHUSETTS, AUGUST 2007 S: Y, Y.



Notation

All notation should be as simple as the nature of the operations to
which it is applied.

CHARLES BABBAGE (1791-1871)
English Mathematician, Philosopher, Mechanical Engineer and
Proto-Computer Scientist

Notation Explanation
Nor Z*t Set of natural numbers or positive integers:
N=7*=1{1,2,3,---}
Z Set of integers:
Z =1{0,+n:n €N}
VAS| Set of positive integers greater than 1:
Zsy ={n:n€Zand n > 1}
Q Set of rational numbers:
@:{% :a,beZandbaéO}
R Set of real numbers:

R = {n+0.d1d2d3...:n€ Z, d; € {0’172’... 79}
and no infinite sequence of 9’s appears}

C Set of complex numbers:
C={a+bi:a,beRandi=+—1}
Zn or Z/NZ Residue classes modulo N:

Zy =Z/NZ=1{0,1,2,--- ,N —1}.
Ring of integers. Field if N is prime

ZN|x] Set (ring) of polynomials with integer coefficients,
modulo NV

Zx) Set (ring) of polynomials with integer coefficients
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Notation

Ly

#(Zy) or |Z}|
F, or Z,

Fq

f(z)

f—l

f(@) ~ g(z)

(%)

&
S
N~—

M
&

i

=t
8

8
>

?}N
~

Op
logy, =
logx

Inz

exp(z)

alb
atb
ged(a, b)
lem(a, b)

[z ] or [a]

Multiplicative group:
Zy ={a€Zn: ged(a,N)=1}.

Order of the multiplicative group

Finite field with p elements, where p is a prime
Finite field with ¢ = p* a prime power
Funcfion of

Inverse of f

f(z) and g(z) are asymptotically equal

Binomial coefficient:

(n ) _nan-1)mn-2)---(n—i+1)

i =

7!

Integration

T odt
Logarithmic integral: Li(z) = —_
5 Int

Sum: 1 +x0 + -+ zp,

Product: z125 -z,

x to the power k
kP=P®P®---® P, where P is a point (z,y) on
—_—————

k summands
an elliptic curve E: y? =23 +az 4+ b

Point at infinity on an elliptic curve E
Logarithm of x to the base b (b # 1): z = bl°&v
Binary logarithm: log,

Natural logarithm: log, z, e = le ~ 2.7182818
n>0 """

:cn

Exponential of z: e* = —
n>0 M

a divides b

a does not divide b

Greatest common divisor of (a, b)
Least common multiple of (a, b)
Greatest integer less than or equal to x

Least integer greater than or equal to x
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x mod N

z =y mod N
x =y (mod N)
x # y (mod N)
z¥ mod N

kP mod N

ordy (a)

indg, v (a)

log, @ mod N

. &
Remainder: z — N []T/'J
z is equal to y reduced to modulo N
z is congruent to y modulo N
z is not congruent to y modulo N
z to the power k modulo N
kP modulo N, with P a point on elliptic curve FE

Order of an integer a modulo N;
also denoted by order(a, V)

Index of a to the base g modulo N

Discrete logarithm of a to the base g modulo N:
log,a mod N = ind,, n(a)

Prime counting function: w(z) = > 1
p’;rsi;fm
Number of (positive) divisors of N: 7(N) = Y 1
dIN
Sum of (positive) divisors of N: o(N) = > d
dIN

Euler’s totient function: ¢(N) = > 1

0<k<N

ged(k,N)=1
Carmichael’s function:
A(N) = lem (A(p1™), A(p3?), -+, A(pg*))
if N = ﬁ o

=1
o0
Riemann zeta-function: {(s) = [] n~%,
n=1

where s = o 4 it, with o,t € ]R_and it =+/—1

Legendre symbol, where p is prime

Jacobi symbol, where n is composite

Set of all quadratic residues of N

Set of all quadratic nonresidues of N

,]N:{an}‘\,: (%):1}

Set of all pseudosquares of V: Q N=Jyv —Qn
Asymptotic equality

Approximate equality

Infinity



xviii

Notation

Iﬁﬁm:UEDﬂﬂ
o
=g

[QO»Q17¢]2,"' aQn]

[QO,Ql,Q27Q3,"']

Ci =

S

NP

ZPP

RP

BPP

co-RP
co-N'P
PS
NPS
CFRAC
ECM

Implication

Equivalence

Blank symbol; end of proof
Space

Probability measure
Member of

Proper subset

Subset

Finite simple continued fraction:
1
qo + 1

q1+ 1
+
q2 . 1
e Qn-1+ —
n

Infinite simple continued fraction:
1
q0 <l 1

q +
q2 +

1
1
Q3+ —
k-th convergent of a continued fraction
Class of problems solvable in polynomial-time by

a deterministic Turing machine

Class of problems solvable in polynomial-time by
a nondeterministic Turing machine

Class of problems solvable in polynomial-time by
a random Turing machine with zero errors

Class of problems solvable in polynomial-time by
a random Turing machine with one-sided errors

Class of problems solvable in in polynomial-time by
a random Turing machine with two-sided errors

R'P-complete problems

N'P-complete problems

‘P Space problems

NP Space problems

Continued FRACtion method (for factoring)
Elliptic Curve Method (for factoring)
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Xix

NFS
QS/MPQS

ECPP
DES
AES
DSA
DSS
DHM
RSA
RSAP
IFP
DLP
ECDLP
QRP
SQRTP
RFP
LLL
SVP
PNT
WWWwW

QYR X

Number Field Sieve (for factoring)

Quadratic Sieve/Multiple Polynomial Quadratic
Sieve (for factoring)

Elliptic Curve Primality Proving
Data Encryption Standard
Advanced Encryption Standard
Digital Signature Algorithm

Digital Signature Standard
Diffie-Hellman-Merkle key-exchange
Rivest-Shamir-Adleman Encryption
RSA Problem

Integer Factorization Problem
Discrete Logarithm Problem
Elliptic Curve Discrete Logarithm Problem
Quadratic Residuosity Problem
Modular Square Root Problem
k-th Root Finding Problem

Lenstra-Lenstra-Lovasz lattice reduction algorithm

Shortest Vector Problem

Prime Number Theory: n(z) ~ z/Inx
World Wide Web

Plaintext space

M € M Plaintext

Ciphertext space

C € C Ciphertext

Encryption key

Decryption key

Encryption C = E,, (M)

Decryption M = Dy, (C)

RSA encryption exponent

RSA decryption exponent

RSA encryption C = E.(M) = M® (mod N)
RSA decryption M = Dy(C) = C? (mod N)
RSA function
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