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PREFACE

The classical random flow and Newtonian mechanics approaches
are the most extensively studied stochastic modeling methods for dy-
namic processes in biological, engineering, physical and social sciences.
Both of these approaches lead to differential equations.

In the classical stochastic modeling approach, the state of a dy-
namic process is considered to be a random flow or process satisfy-
ing a certain probabilistic law such as Markov or diffusion. From
these types of probabilistic assumptions, one then needs to deter-
mine the state transition probability distribution and density func-
tions (STPDF). The determination of the unknown STPDF leads to
the study of deterministic problems in the theory of ordinary, par-’
tial or integro-differential equations. These types of equations are
referred to as master equations in the literature. The solution pro-
cesses of such systems of differential equations are used to find the
higher moments and other statistical properties of dynamic processes
described by random flows.

On the other hand, the classical Newtonian mechanics type of
stochastic modeling approach deals with a stochastic calculus to for-
mulate stochastic mathematical models of dynamic processes. This
approach leads directly to a system of stochastic differential equations,
and its solution processes provide the description of the states of the
dynamic processes as stochastic or random processes. This method
of stochastic modeling generates three basic problems:

(i) Concepts of solution processes depending on modes of conver-
gence and the fundamental properties of solutions: existence,
uniqueness, measurability, continuous dependence on system pa-

rameters.

iii



iv Preface

(ii) Probabilistic and statistical properties of solution process: prob-
ability distribution and density function, variance, and moments
of solution processes and the qualitative/quantitative behavior of
solutions.

(iii) Deterministic versus stochastic modeling of dynamic processes:
If the deterministic mathematical model is available, then why
do we need a stochastic mathematical model? If a stochastic
mathematical model provides a better description of a dynamic
process than the deterministic model, then the second question
is to what extent the stochastic mathematical model differs from
the corresponding deterministic model in the absence of random
disturbances or fluctuations and uncertainties.

Most of the work on the theory of systems of stochastic differen-
tial equations is centered around problems (i) and (ii). This is because
the theory of deterministic systems of differential equations provides
many mathematical tools and ideas. It is problem (iii) that deserves
more attention. Since 1970, some serious efforts have been made to
address this issue in the context of stochastic modeling of dynamic
processes by means of systems of stochastic differential equations. In
the light of this interest, now is an appropriate time to present an
account of stochastic versus deterministic issues in a systematic and
unified way.

Two of the most powerful methods for studying systems of non-
linear differential equations are nonlinear variation of parameters and
Lyapunov’s second method. About a quarter century ago a hybrid of
these two methods evolved. This hybrid method is called variational
comparison method. In addition, a generalized variation of constants

method has also developed in the same period of time. These new
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techniques are very suitable and effective tools to investigate problems
concerning stochastic systems of differential equations, in particular,
stochastic versus deterministic issues.

This book offers a systematic and unified treatment for systems
of stochastic differential equations in the framework of three meth-
ods: a) variational comparison method, b) generalized variation of
constants method, and c) probability distribution method. The book
is divided into five chapters. The first chapter deals with random
algebraic polynomials. Chapter 2 is devoted to the initial value prob-
lem (IVP) for ordinary differential systems with random parameters.
Stochastic boundary value problems (SBVP) with random parameters
are treated in Chapter 3. Chapters 4 and 5 cover IVP and SBVP for
systems of stochastic differential equations of It6 type, respectively.

A few important features of the monograph are as follows:

(i) This is the first book that offers a systematic study of the well-
known problem of stochastic mathematical modeling in the con-
text of systems of stochastic differential equations, namely, “stochas-
tic versus deterministic;”

(ii) It complements the existing books in stochastic differential equa-
tions;

(iii) It provides a unified treatment of stability, relative stability and
error estimdte analysis;

(iv) It exhibits the role of randomness as well as rate functions in
explicit form;

(v) It provides several illustrative analytic examples to demonstrate
the scope of methods in stochastic analysis;

(vi) The methods developed in the book are applied to the exist-

ing stochastic mathematical models described by stochastic dif-
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ferential equations in population dynamics, hydrodynamics, and
physics;

(vii) Last but not least, it provides several numerical examples and
figures to illustrate and compare the analytic techniques that are
outlined in the book.

The monograph can be used as a textbook for graduate students.

It can also be used as a reference book for both experimental and

applied scientists working in the mathematical modeling of dynamic
processes.

G. S. Ladde
M. Sambandham



NOTATION AND ABBREVIATIONS

For the convenience of readers we list below the various notations
and abbreviations employed in the monograph.

Vectors (column vectors) of dimension n are basically treated as
nx 1 matrices. All relations such as equations, inequalities, belonging
to, and limits involving random variables or functions are valid with
probability one. Sometimes the symbols z(t) and z(t,w) are used
interchangeably as a random function.

R" As n-dimensional Euclidean space with a

convenient norm || e ||

|[e] The norm of a vector or matrix

R The set of all deterministic real numbers or a real
line

R, The set of all t € R such that t > 0

I An arbitrary index set, in particular, a finite,

countable set, or any interval in R

I(1,n) {1,2,...,n}, that is, the set of first n positive
integers

F [to,to + a], where to € R and a is a positive real
number

B(z,p) The set of all z € R™ such that ||z — z|| < p for
given z € R™ and positive real number p

B(z,p) The closure of B(z, p)

B(p) The set B(z,p) with z =0 € R"

R The o-algebra of Borel sets in R™

B The o-algebra of Borel sets in a metric space (X,d),

where d is a metric induced by the norm || e || and X

is a separable Banach space

xi



xii

Notation and Abbreviations

(Q,F,P)=0 A complete probability space, where 2 is a sample
space, F is a o-algebra of 2, and P is a probability
measure defined on F
Fi A sub-o-algebra of F for t € Ry
Ly The smallest sub-c-algebra of F generated by a
k-dimensional normalized Wiener process
z(t) fort € Ry
R[Q, R™] The collection of all random vectors defined on
complete probability space (£2, F, P) into R™
R[Q2, R"™]| = [Q, Mpxm] A collection of all n x m random matrices
A(w) = (a;j(w)) such that a;; € R[Q2, R)
Izl Izl = (Ell@)I71) " = (fy le@)iPPa@w))
forp>1
Lr The collection of all n-dimensional random vectors
z such that E[||z(w)||P] < oo for p >1
L7, R" A collection of all equivalence classes of
n-dimensional random vectors such that an
element of an equivalence class belongs to £L?
R[[a,b], R[?, R™]] = R[[a, b] x 2, R"] A collection of all R™-valued
separable random functions defined on [a, b] with
a state space (R"*,F"), a,b€ R
M{[a,b], R, R*]] = M][[a,b] x ©, R"] A collection of all random

M[R, x R™, R|Q,

functions in R[[a, b], R[S?, R"]] which are product-
measurable on ([a,b] x Q, F! x F,m x P), where
(Q,F,P) = Q and ([a,b], F',m) are complete
probability and Lebesgue-measurable spaces, re-
spectively

R"] = M[R, x R™ x Q, R"] A class of R™-valued
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random functions F'(t, z,w) such that F(t, z(¢,w),
w) is product measurable whenever z(t,w) prod-
uct is measurable

M([0,1] x R™ x R™, R[Q, R™]] = M[[0,1] x R™ x R™ x 2, R™] A class
of R™-valued random functions F(t,z,y,w) such
that F(¢,z(t,w), y(t,w),w) is product measurable
whenever z(¢,w) and y(t,w) are product measur-
ables

C|D, R"] The class of all deterministic continuous functions
defined on an open (t,z) subset D of R™*! into
R®

C[R4 x R™, R™] The class of all deterministic continuous functions
defined on R, x R™ into R™

C[[0,1] x R™ x R™, R™] The collection of all deterministic continuous
functions [0,1] x R™ x R™ into R™

Cl[a,b], R[], R"]] = C[R4+ x R™, R[Q, R"]] A collection of all sample
continuous R"-valued random functions z(¢,w)

C[R4 xR™ R[Q, R"]] = C[R4 x R" x, R"] A class of sample continu-
ous R"-valued random functions F'(t, z,w) defined
on Ry X R™ x § into R"

C([0,1] x R™ x R™, R[Q, R"]] = C[[0,1] x R™ x R" x Q,R"] A class
of sample continuous R™-valued random functions

F(t,z,y,w) defined on [0,1] x R™ x R™ x Q into

Rn
AT The transpose of a vector or matrix A
At The inverse of a square matrix A
tr(A) The trace of a square matrix A

det(A) The determinant of a square matrix A



