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PREFACE

Signals and Systems is a core subject in electrical engineering, and unfortu-
nately it’s one of the most difficult. Laden with heavy mathematics, many, if
not all, students find courses in the areas of signal processing and systems to be
very difficult. This book is aimed primarily at those students. It can serve as a
supplemental text for students studying signals, systems, and communications
courses in electrical engineering. The topics covered in this book are suitable
for both undergraduate and graduate students.

This book is also very useful for electrical engineers who have been out of
school for a long time and would like a refresher. We assume the reader has
had calculus and some exposure to differential equations; however, this book
is well suited for self-study. If you are an intelligent person simply looking to
learn electrical engineering on your own, this is the book for you. Once you go
through it you will be well prepared to tackle full-blown textbooks written on
this topic.

Our approach in this text is to briefly describe concepts, theorems, and for-
mulas and to focus on problem-solving. We explicitly demonstrate the ow-to
aspect of problem-solving. As a result each chapter is built around a core of
explicitly solved problems. We try to demonstrate as many steps as possible so
that the student does not have to guess how to get from Point A to Point B in
a problem solution. Theorems and formulas are stated briefly. Curious students
who are interested in derivations of formulas and theorems or detailed expla-
nations of concepts can seek the references at the end of the book or their own
textbook if they are interested.

Each chapter includes a chapter quiz with problems similar to those solved
in the text. The answers to every question are provided at the end of the book,
so that the student can try the problems and determine whether or not they have
really grasped the material. A final exam and answer key at the end of the book
provide the reader with a means to review the concepts laid out in the chapters.
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We try to cover all major areas of signals and systems. The book begins
by covering methods used to calculate energy and power in signals. Next, we
spend time studying signals in the frequency domain using Fourier analysis.
Other topics covered include amplitude, frequency, phase modulation, spectral
analysis, convolution, the Laplace transform, and the z-transform. The primary
aim of the book is to cover basic topics a student should master on a first
exposure to the subject. Therefore, topics such as probability and digital signal
processing are not covered in this edition.

Unfortunately, in a book with this size and scope it is not possible to cover
every aspect of the field or to cover all topics in great detail. We have tried
to put the best sampling of basic concepts together which is representative of
most courses and texts. In any case, you should be able to get through this book
relatively quickly and it will give you the confidence to solve problems and
prepare you to go on to further study in the field.

David McMahon

ABOUT THE AUTHOR

David McMahon works as a researcher in the national laboratories on nuclear
energy. He has advanced degrees in physics and applied mathematics, and has
written several titles of McGraw-Hill.
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Introduction

A signal is a function of time that carries information. Physically, it may be a volt-
age across a capacitor or a current through a resistor for example, but in this book
we will primarily be interested in the mathematical properties of signals. As such
in general we will ignore the specific realization of a signal, beyond the under-
standing that it has some electrical form. It is typical to denote a signal by x (7).

Often signals are real functions of time. However, it is also possible to have
a signal that is a complex function. In this book we will follow the convention
used in electrical engineering and denote j = v/— 1. Therefore a complex signal
can be written in the form x(¢) = x;(¢) 4+ jx,(¢), where x(¢) and x,(¢) are real
functions.

Continuous and Discrete Signals

A signal can be continuous or discrete. Basically, in this case the signal is a plain
old function you are familiar with from calculus. In short, a continuous signal
can assume any value in some continuous interval (a, ). In fact, a and b can
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Fig. 1-1. An example of a continuous signal, a sine wave.

range over the entire real numbers, such that the signal is defined for (—o0, 00).
A continuous signal is shown in Fig. 1-1.

A discrete time signal is defined at discrete times we can label with an integer
n. Therefore we often define a discrete time signal by x [n]. A discrete time signal
can be created from a continuous signal by sampling x(#) at regular intervals.
Mathematically, we can think of a discrete signal as a sequence of numbers. If
we denote the sampling interval by T, then x[n] = x(nT); that is, we compute
the discrete values of x[#] by passing the argument ¢ = n T to the function x(¢).
In Fig. 1-2, we show a discrete time signal formed by sampling the sin function
at regular intervals.

In this chapter we will examine some basic properties of continuous signals;
in the next chapter we’ll do some examples with discrete signals.

0.5 {
&

s £y N P

-1

Fig. 1-2. A discrete time signal formed by sampling the sine function.
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As we will see throughout much of the book, it is possible to analyze signals by
studying their frequency content. Later, we will see that by using a mathematical
tool known as the Fourier transform we can transform a function of time into a
function of frequency w, which is denoted by X(w). For now, we will begin by
looking at some important properties that can be studied as functions of time. We
often say that we are working in the time domain when looking at signals this way.
When studying X(w), we say that we are working in the frequency domain. We
begin by computing the energy and power content of a signal in the time domain.

Energy and Power in Signals

Consider a voltage v(¢) across a resistor R. Recalling Ohm’s law, v(¢) = Ri(¢),
where i(¢) is the current, the instantaneous power is given by
v(1)’

R

p(t) =

Equivalently, we can instead consider the current i(¢) through the resistor, in
which case the power is given by

p(t) = Ri(t)?

Now if we calculate the power on a per-ohm basis, then we have p(1) = v2(¢) =
i%(t). Then the total energy in joules is found by integrating

E = [_oo p(t)dt =/_°° i2(t)de

o0 oo

The average power is given by

1 T/2
P = lim = /_ i2(t)de

We can generalize these notions to find the energy and power content in an arbi-
trary signal x(¢). In general a signal can be complex, so we consider the squared
modulus given by |x()|*> = x(¢) X(¢), where x(t) 1s the complex conjugate given
by X(¢) = x1(t) — jx,(¢). If the signal is real then |x(z)|* = x2(¢).

Therefore given a signal x(¢), the normalized energy content E is given by

E = /oo |x(¢)* dr (1.1)

o0
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The normalized average power ofa signal 1S giVCI’l by
= m . A X . d 1.2
P = 1 _ t t .

T2

If a signal is discrete, then the normalized energy content is found by calculating

E= ) Ix[)? (1.3)

n=—0oo
And the normalized average power becomes

N

: 1 g
P = lim —— n:Z_N |x[n]| (1.4)

Classification of Energy Signals
and Power Signals

Signals can be classified as energy signals or power signals. An energy signal
is one for which the energy E is finite, that is 0 < £ < oo, while the average
power vanishes (P = 0). On the other hand, if P is nonzero but finite (i.e.,
0 < P < o0) and the energy is infinite, then the signal is a power signal. It is
possible for a signal to be neither an energy signal nor a power signal. In the
next few sections, we summarize some common signal types.

DC SIGNALS

A DC signal is simply a signal that has a constant value. In Fig. 1-3, we show
a signal that maintains the constant value of unity for all times.

PERIODIC SIGNALS

In many cases of interest a signal will be periodic. This means that there exists
some positive number 7 which we denote the period such that

x(t) = x(t + Tp) (1.5)

The fundamental frequency f; is given by the inverse of the period:

Jo= TLOHZ (1.6)
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x(f)
2t

LSk

=

0.5¢

-3 -2 —1 1 2 3
Fig. 1-3. A DC signal.

When considering periodic signals, we will examine the energy content over
one period. If the energy for one period E| is finite, then the signal is a power
signal, and the power is given by

E
P = 70 (for periodic signals) (1.7
0

Many types of periodic functions are possible. For example, in Fig. 1-4 we have a

“sawtooth” wave. To find the period, we look for the smallest value of ¢ at which
a feature of the function repeats (recall (1.5)). For example, in the sawtooth

x(f)
2_

0.5

—4 =2 2 4 !

Fig. 1-4. A sawtooth wave. The period is 2 s, and the frequency is 0.5 Hz.
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Fig. 1-5. A periodic discrete time signal.

wave we can look at the location of each peak in the wave. By inspection we
see that the peaks repeat every 2 s, and so the fundamental period is Ty = 2 s.
The fundamental frequency is then found to be

1 1
—Hz

ﬁ:%:2

Itis also possible to have periodic discrete time signals. A discrete time signal
x[n] is periodic with period N, where N is a positive integer if

x[n] = x[n + N] (1.8)

A simple example of a periodic discrete time signal is found by sampling the
sawtooth wave at regular intervals. This is shown in Fig. 1-5.

SINUSOIDAL SIGNALS

The most familiar periodic functions are the trigonometric functions. In partic-
ular, we are interested in sinusoidal signals. A sinusoidal signal can be written
as

x(t) = A cos (wt + 0) (1.9)



