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Preface

Simulated annealing is a simple and general algorithm for finding global minima. It
operates by simulating the cooling of a (usually fictitious) physical system whose possible
energies correspond to the values of the objective function being minimized. The anal-
ogy works because physical systems occupy only the states with the lowest energy as the
temperature is lowered to absolute zero.

Simulated annealing has been developed by a wide and highly interdisciplinary com-
munity and used by an even wider one. As a consequence, its techniques and results are
scattered through the literature and are not easily accessible for the computer scientist,
physicist, or chemist who wants to become familiar with the field.

The present monograph is intended both as an introduction for the noninitiated and
as a review for the more expert reader. We start by developing the subject from scratch.
We then explain the methods and techniques indispensable for building state-of-the-art
implementations. The physical background presented is meant to sharpen the reader’s
intuition for the field.

In our choices we have been somewhat biased toward the line of investigation de-
veloped in the last decade and a half of progress in one particular community: those who
have worked on the theory of optimal thermodynamic processes and obtained most of their
results by viewing simulated annealing as the cooling of a physical system. This point of
view leads to some important improvements in algorithm design and these form the main
topic discussed herein. While some proofs for these improvements are presented, most of
the results require assumptions that may or may not be justified and should therefore be
classified as conjectures. As such, they represent open problems in the area, and the tone of
the discussions is in this spirit. Experimental data and heuristic arguments regarding various
improvements are presented and discussed. Special care is taken to make the underlying
assumptions explicit and to examine the likelihood of their validity.

The background assumed is minimal. The little physical background required is
derived in Chapter 5; the reader with a background in physical science can probably skim
this part. The mathematical background, mostly the theory of finite Markov chains, is
developed in Chapter 6. The reader with an educational background in mathematics or
computer science can probably skim section 6.1. The rest of Chapter 6 is required reading
for all undergraduate backgrounds and brings together those optional topics from statistical
physics and Markov chains that bear strongly on the reader’s understanding of the effect that
variants of the algorithms can have. Only readers with a graduate background in statistical
physics can skim this part without compromising later understanding.

Xi



Xil Preface

The book is divided into four parts, each with a distinct purpose and flavor. Minimal
familiarity with a part can be gained by reading the brief synopsis at its beginning. Part I
presents an overview of simulated annealing and how it fits into the family of algorithms
for global optimization. This part is accessible to all readers and they should familiarize
themselves with it before proceeding. Part II develops the theoretical aspects of complex
systems that are indispensable for understanding simulated annealing and its refinements.
We tried hard to keep this material to a minimum so as to make Part III of the text as
accessible as possible to a wide audience. The further one has managed to work through
Part II, the more the refinements in Part IIT will make sense. We have found it relatively
easy to cover Parts I and II in their entirety with advanced undergraduate classes of mixed
backgrounds (mathematics, computer science, physics, and engineering) in a one-semester
course using selected topics from Part III as a supplement and source of projects. Part I11
is very different in nature from the previous parts. Theory is almost completely absent and
each chapter focuses on an area where simulated annealing can be enhanced and describes
the competing methods for improving performance. Each of the methods presented has been
tested on some examples on which its creators claim improved performance. It is our belief
that selecting the more promising algorithms will depend on the structure of the problem of
interest, i.e., different enhancements improve performance on different problems. Some of
the enhancements are outlined in sufficient detail to allow implementation; others require
going back to the research articles cited for further details. In general, Part III requires
significantly more sophistication on the part of the reader. Coding an enhancement based
on our description requires thorough understanding. Part IV switches back to the style in
Part I, albeit at a significantly more advanced level. It starts off roughly where Part II
leaves off and continues our development of the physical understanding that one can get
about global optimization problems. This is definitely graduate-level material and brings the
reader to the research level in the field. While the theory developed here is not indispensable
for utilizing the enhancements in Part II1, it does shed further light on these methods and
is, in our opinion, indispensable for the ultimate understanding that can bring this subject
from the realm of heuristics to the realm of provably optimal algorithms.

The text grew out of a number of courses taught at the Niels Bohr Institute, the
Technical University of Denmark, the University of Southern Denmark (formerly Odense
University), and San Diego State University. A version of this course also formed the
material presented in a tutorial for the STAM annual meeting during the summer of 1994 in
San Diego.

Additional material related to the contents of this book can be foundatht tp: / /www .
frostconcepts.com/. Specific questions regarding errata and updates can be ad-
dressed to salamon@math.sdsu.edu.
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Part |

Overview

Part I of this book presents a stand-alone course on the very elementary aspects of annealing.
The really impatient reader can go directly to Chapter 4, which presents the bare-bones an-
nealing algorithm. On the other hand, the experienced reader may choose to skip Chapter 4.

Chapter 1 puts the annealing algorithm in context and compares and contrasts the
annealing approach to algorithms based on biological heuristics. This chapter is strongly
recommended for all readers. Chapter 2 presents six examples of simulated annealing
problems. These problems are used throughout the text for illustration. The impatient
reader can come back to these as needed. Chapter 3 consists of an elaborate table to be used
as a dictionary for translating different terms used in the nomenclature of global optimization
and its physical and biological counterparts. A glance at this table is recommended and it
can be consulted as needed.






Chapter 1

The Place of Simulated
Annealing in the Arsenal of
Global Optimization

This text presents one general approach to the problem of global optimization. The basic
problem is to find the lowest possible value of a function' whose graph looks typically like
a many-dimensional version of Fig. 1.1. Six examples of such problems are described in
Chapter 2.

Calculus provides a powerful tool for characterizing and locating local minima. The
problem of global minima has remained much more elusive. In the special case of a convex
function,”? the familiar conditions from calculus are necessary and sufficient conditions
with which to establish the optimality of a point. Lacking convexity, one is left with little
recourse except to enumerate all possibilities and examine each one (sometimes referred to
as a “grand tour”). This is not a viable option for the type of problems we are interested
in, which typically have far too many candidates for exhaustive enumeration.’> Lacking a
better strategy, enumeration until the point of exhaustion does give a viable strategy for
finding better than average solutions even if the very best is unreachable. Computers have
had a large impact here since they have extended the point of exhaustion by many orders of
magnitude. In fact, in the 1950s the computer was heralded as a wonderful tool for global
optimization because it made long random search runs possible [Con80]. A method often
advocated was to evaluate the function at a few million points and select the best value
found. A variant of this scheme is a good strategy in low dimensions or in problems with
relatively few minima: use many random points as initial states and feed them to a local
minimizer.*

Random search was not the last word in global optimization, but it did bring to the
field the important tool of a random number generator. Methods that incorporate the use
of random number generators are known as Monte Carlo methods. Typically such methods

I'The problem of finding the largest possible value of a function f is equivalent to finding the lowest possible
value of — f.

2A function is convex iff a line segment connecting two points on the graph of the function is always above the
graph of the function [Lue84].

3Berry et al. [BBK+96], however, carried out such a program for chemical structure problems in clusters of
moderate size (see Example B in Chapter 2).

“A more sophisticated variant uses simulated annealing combined with a local minimizer [DW96, MRX92].
This technique is called basin hopping and is discussed in Chapter 10.
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Figure 1.1. A landscape with many local minima.

are superior to deterministic algorithms for problems in high dimensions (for example,
in numerical evaluation of integrals). Clever implementations of Monte Carlo techniques
amount to refinements of random search known as importance sampling [BH97]. Such
sampling techniques can greatly increase the rate of convergence of Monte Carlo algorithms
by sampling preferentially according to some distribution. Choosing the best distribution for
rapid convergence is often an art [BH97]. We will find that this idea of importance sampling
is very useful for comparing simulated annealing with other Monte Carlo-based global
optimization procedures. The differences between the techniques are nicely characterized
by differences in their criteria of importance during the sampling.

During the last 15 years, Monte Carlo methods have taken over the field of global op-
timization in the form of heuristic approaches based on analogies [Hol75, Aarts89, Otten89,
Gold89, HRS98, Koza99]. The algorithms set up a correspondence between the optimiza-
tion problem and a physical or biological system. These algorithms simulate the behavior of
the system to find states with good values of the objective function. While myriad variations
on both themes exist, the main choices for the correspondence are either the slow cooling
of a physical system to find low-energy states or the evolution of a biological population to
find high-fitness states. The first is called simulated annealing and is the basis of physical
heuristics. The second is called either genetic algorithms or evolutionary programming
and is the basis of biological heuristics. In the context of importance sampling, the major
difference between the two schemes can be understood as a degree of greediness or a degree
of urgency.

An optimization algorithm is called greedy if it chooses the best alternative at each
step without regard to long-term benefits. The standard example is the method of steepest
descent [Lue84]. The relevance for optimization heuristics is as follows. All heuristics
in the family under discussion search the state space by a sequence of random choices of
states. They all sample preferentially “near” states with good values of the objective. This
is in keeping with the dictates of importance sampling. Biological algorithms tend to add a
bias in favor of those states with good values of the objective that were found quickly. That
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Figure 1.2. A golf-hole landscape.

is, they preferentially “breed” those members of the population (states) with high fitness.
The physical heuristics on the other hand search to the same extent near all states at a given
value of the objective. To readers with a background in biochemistry, this distinction may
appear familiar as the one of thermodynamic versus kinetic control of a reaction. In the
language of importance sampling, the issue is what criterion constitutes importance. The
physical heuristic places importance only on the quality of the objective and not on how
quickly it is reached. The biological heuristics place importance also on how quickly the
high-fitness state is reached. In this sense, the biological algorithms are more greedy.
How the performances of various heuristic methods compare with each other as well
as with more traditional local methods such as quasi-Newton or steepest descents depends
on the structure of the problem. For example, if we are dealing with a convex function in
n real variables, then calculus-based tools (quasi-Newton, conjugate gradient, etc.) are the
best choices. At the opposite extreme, the values of the objective function are randomly
assigned to states, with zero correlation between nearness of the points and values of the
objective. In this case, sampling near states with good values of the objective does not help,
and we might as well use random search. Similarly, no algorithm can beat random search
on the so-called golf-hole problem, a variant of which is shown in Fig. 1.2. Such problems
are characterized by the fact that there is no information regarding the global optimum at
points outside a small neighborhood of this optimum. Between these extremes it is not
known which structures lead to which purportedly optimal choices of algorithms beyond
the usually exaggerated claims of the inventors. The results depend heavily on who runs the
experiments and what examples they choose.’ One of the themes of the present book is the
importance of finding a classification scheme for hard optimization problems. In lieu of firm
principles, we are left only with the guidance afforded by the old metatheorem valid for all
applications of mathematics: The more we exploit the structure of the problem, the better.
One conclusion based on this metatheorem is that further study of the structure of
a problem enables one to design better, more specific algorithms. An example of how

5See, however, the experiments described by Johnson et al. [JAMS89, JAMS91] which achieve a higher level
of thoroughness.



