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Preface

Why write another book on mechanics? There are, after all, a number of
excellent texts that describe in great detail the way classical solids behave
when acted upon by static and time-varying forces; many of these are cited in
this monograph. These texts treat solids as continuous objects, and quantum
mechanics does not enter the discussion. Furthermore, the atomic nature of
the solid is implicit, but does not enter in a central role. At the other end
of the spectrum, texts on condensed matter physics focus on the quantum
mechanical nature of the solid; these contain quite clear descriptions of acou-
stic waves in solids, describing their dynamic and thermal properties, and
how they interact with electrons in the solid, but contain little information
regarding bulk deformations.

This text, focussing on the mechanics of very small objects, attempts to
provide a link between these two approaches; in addition to describing the
theories of both the classical and the quantum mechanical solid, I attempt to
outline where the classical description breaks down, and quantum mechanics
must be applied, to understand the behavior of a nanoscale object. I have
tried to merge the continuum description of the solid with the atomic one,
and to show how and where quantum mechanics plays a role, especially as
the size scale of the system is reduced, making the quantized energy scale
larger and the role of thermal vibrations more important.

This text is designed to be an introduction for physicists and engineers
to the basic foundations of solid mechanics, treating both the static and dy-
namic theories. We begin with a simplified atomistic description of solids,
starting in Chap. 1 with the problem of two atoms in a bound state and
then extending the discussion to three and then N atoms in a linear chain.
In Chap. 2 we cover the microscopic description of the mechanics of three
dimensional insulating solids, from the same basic condensed matter view-
point, and in Chap. 3 touch on the thermal and transport properties for
phonons, the quantized mechanical excitations of a solid. In Chaps. 4-7 we
connect the microscopic description to the conventional description of conti-
nuum dynamics, introducing the concepts of strain and stress, their interplay
and their control of the mechanical function of deformable solids, and then
dealing with both static and dynamic problems in continuum mechanics. In
Chap. 8 we touch on the topic of dissipation and ncise in mechanical systems.
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In the last three chapters, Chaps 9-11, we describe a number of experimental
implementations of nanomechanical devices, and also give an outline of the
techniques nvolved in patterning and fabricating nanomechanical structures

This text 1s written at an advanced undergraduate or beginning graduate
student level It should also prove useful for the practicing engineer or scien-
t1st. The reader 1s expected to have a good grounding in classical, rigid-body
mechamcs, covered in most first-year courses An understanding of vector
calculus and linear algebra is assumed, so that the reader should be familiar
with divergence and gradient operators, as well as how to mvert and diago-
nahize a matnx, and take a determunant No background in solid mechanics
1s assumed, nor 1s any knowledge of semiconductor processing, the mamn tool
for the fabrication of nanometer-scale devices. Exercises are provided at the
end of each chapter, and range in difficulty as the exercise number goes up

Some notes on symbols. 1 have chosen to use bold, italic roman symbols
for vectors such as u, and bold, sans-serif symbols for tensors such as R
Scalars are wnitten 1n 1talic roman type as in GG, and components of vector
or tensors written as italic roman with roman subscripts such as R,, A list
of commonly used symbols, and their units and conversion in the Systéme
Internationale (SI) and centimeter-gram-second (CGS) systems appears at
the end of the book.

I would lIike to express my appreciation to those who read and commented
on sections of the unfinished manuscript, including Dr. Robert Knobel, Derek
Barge, and Kang-kuen Ni. I would also like to express my thanks to my wife
Ning and my children Agnetta and Nicholas for their patience while I was
working on this book.

Santa Barbara and Los Angeles Andrew N Cleland
July, 2002
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1. Introduction: Linear Atomic Chains

This book is aimed at developing a coherent description of what we term
“nanomechanics”, the mechanical behavior of nanometer-scale objects, that
is, objects for which at least one dimension is significantly less than 1 ym.
We will not concern ourselves with rigid body dynamics, those related to
the motion of an object’s center of mass, and the rotation of the object
about its center of mass; these are quite well described in a large number of
texts, for both the classical and quantum mechanical limits. Instead we will
focus on the static and dynamic deformations of solid objects, both with and
without external forces. The self-resonant vibrational modes determine some
of the thermodynamic properties of solids, such as the heat capacity and
thermal conductivity; we touch on this connection as well. In the smallest
structures, quantum mechanics must be applied to the description of the
motion.

In the first part of this text, we provide the formalism required to under-
stand these aspects in a unified manner, and we present a number of simple
examples showing how the small size scale can impact and alter the bulk
properties. In the second part of the text, we describe some approaches to fa-
bricating and measuring the properties of nanoscale objects, providing some
examples of actual devices.

We begin this chapter by discussing a very simple mechanical problem,
that of a molecule of two atoms bound together by their mutual interaction.
We restrict the motion of the atoms to one dimension, along the line connec-
ting the atoms, and consider the response to external forces, and then work
out the molecule’s natural vibrational resonance frequency. Next we move to
a similar problem with three atoms, and then to the more general problem of
the N atom chain. Following this heuristic discussion, we enter into a discus-
sion of the quantum mechanical description of these systems, and conclude
with the theory for the thermodynamic properties of the N atom chain.

1.1 A Model Binary Molecule: Two Atoms

Consider a molecule consisting of just two atoms. We restrict the motion
of the two atoms to one dimension, along the line connecting them, so the
atoms can only move directly towards or away from one another. We assume
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that there is a net attractive force between the atoms; this may be due to
an electrostatic attraction, if the atoms have opposite electric charges, to a
chemical covalent bonding, where the outermost electrons are shared between
the atoms, or to an attraction known as the van der Waals force, generated
dynamically by the mutually induced dipole moments in each atom. At any
rate, we assume that there is a force f(r) between the two atoms, that depends
only on the distance r between them. If this force is purely attractive, the
atoms will accelerate and merge with one another. This however does not
occur, because when the atoms get too close to one another, the electrons
surrounding each atomic nucleus repel one another through their electrostatic
interaction, and are furthermore limited by a fundamental law of quantum
mechanics from occupying the same volume of space. The attractive force
therefore becomes repulsive when the atoms get very close to one another.
As we shall see, it is often more useful to deal with the interaction potential
energy ¢(r) rather than the force f(r), which is defined through the relation

oy =28 -

Note that this differential equation defines the potential energy only up to
an additive constant, whose value is arbitrary and has no physical meaning.
The potential energy can also be described as the negative of the work done

by the force for a displacement r — r from the point of zero potential energy
To, Or

o(ry=-W =— /T f(rydr, (1.2)

which is equivalent to (1.1).

As a specific example, we will consider the model known as the Lennard-
Jones interaction, which applies to atoms interacting through the van der
Waals interaction. The interaction potential energy for the Lennard-Jones
model has the algebraic form

A B

¢r)=~%+ (1.3)

with the parameter A determining the strength of the attractive interaction,
and B the repulsive interaction. The attractive 1/r® dependence is characteri-
stic of the van der Waals interaction, while the repulsive 1/r'? dependence is
somewhat phenomenological. The repulsive interaction is strongest for small
r, with the atoms close together, and decreases more rapidly with r than the
attractive interaction, which therefore dominates for large r. The zero for the
potential energy ¢(r) is chosen so that the energy is zero when the atoms are
infinitely far apart. The force corresponding to (1.3) is
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Fig. 1.1. Lennard-Jones model interaction force —f(r) and potential energy ¢(r),
as a function of distance r/rp. Note we have plotted the negative of the force, so
that a positive value corresponds to an attractive force. The vertical axis is for the
potential, in units of the potential at the minimum, ¢¢ = —¢(ro).

In Fig. 1.1 we have plotted the Lennard—Jones potential ¢(r) and the
force —f(r), as a function of distance r, in units of the equilibrium distance
ro = (2B/A)Y/8. At r = ry, the force is zero, and equivalently, the potential
energy has a minimum. The binding energy Ejp, the difference between the
potential energy minimum and that when the atoms are infinitely far apart,
is given by Ep = ¢(00) ~ ¢(rp) = A?/4B. This amount of energy must be
transferred to the atoms in order to break the bond between them.

The Lennard—Jones potential gives an excellent, quantitative description
of the interactions between noble gas atoms, such as in argon, krypton and
xenon. In argon, for example, the equilibrium spacing in the Ary molecule is
found to be ry = 3.8 A, and the binding energy is E, = 10.4 meV = 1.7x1072!
J [1]. Equivalently, we can write down the constants A = 2r§E, = 63 AS-eV
and B = r?E), = 9.4 x 10* A1%.eV.

The binding energy for argon is less than the thermal energy scale at room
temperature, kgT = 26 meV. Solid Ar, formed through multiple bonds of the
kind we have just described, therefore only forms at quite low temperatures,
below 100 K. The van der Waals interaction, with typical binding energies in
the 10-100 meV range, is particularly weak; while the equilibrium distance rq
is typical for all atomic interactions, the binding energy for the much stron-
ger ionic (electrostatic), metallic and covalent interactions in typical solids
is in the range of one to several tens of electron volts (~ 107!% — 10718 J),
rather than a few meV. These types of bonds are however not as simply
parameterized as the Lennard—Jones interaction, but require a more sophi-
sticated approach. However, meaningful results can be obtained by simply



4 1. Linear Atomic Chains

increasing the binding energy Fj in the Lennard—Jones potential, in order to
mimic these other types of bonds: As we shall see, in most cases it is only the
shape of the potential near the minimum in potential energy that determines
the important mechanical properties of a solid, and this shape is common to
almost all the different bond types.

1.1.1 External Forces

We can now imagine what happens if we try to pull our two atoms apart.
Let’s say that we apply equal and opposite external forces fo. to each atom.
The atoms will move apart until they reach a new equilibrium point r{, where
their attractive interaction balances the external force, —f(r}) = fexs. If the
external force is too large, above the maximum value of —f(r) in Fig. 1.1,
there will be no equilibrium point and the atoms will unbind.

Another way to understand this is to define the potential energy asso-
ciated with the external force, ¢ext(r) = —fext7. Note that the zero for the
external potential is chosen at r = 0. Note there is no factor of two in this
expression: Both atoms are acted upon by the external force, but each atom
is only displaced from r = 0 by /2, so the work done by the force, which is
the negative of the potential energy, is W = 2 X fexer/2.

The total potential energy is then Usor = ¢(7) + oxt (7). For foxs = 0, the
total potential energy is the same as the interaction potential. For small fox,
the minimum for the total potential Ui, will shift to the new equilibrium
point 7f; for fexy too large, no minimum occurs. In Fig. 1.2, we show a
family of potential energy curves for different external forces, showing how
the minimum energy point moves away from 7, until it disappears at large
enough fey, (see Exercise 1.2).

Note that as soon as we apply the external force, the energy minimum
at v, becomes metastable; the atoms can achieve a lower total energy if they
can cross over the potential barrier and escape to infinity. This provides in-
teresting guestions in the case where we allow the atoms to have non-zero
temperature, so that there is a certain probability that they can be thermally
activated over the potential barrier; the same question occurs when we con-
sider quantum mechanical tunnelling, through the barrier, also allowing the
atoms to escape.

In addition to the question of binding, it is often useful to know how a
solid, or in our case, the two atoms, respond to very weak forces, such that
the atoms only displace a very small amount from their equilibrium positions,
from 7 to ry. We can use our model Lennard-Jones interaction to see how
this works. For a very weak force fext, the very small shift in the equilibrium
point allows us to approximate the interaction potential by using a Taylor
series expansion of the potential:



1.1 A Model Binary Molecule: Two Atoms 5

Utot/ ¢0

rirg

Fig. 1.2. Total potential energy Uiot for the Lennard—Jones potential in the pre-
sence of a constant external force; the family of curves is for external forces ranging
from zero (top) to a force larger than the maximum Lennard-Jones binding force
(bottom). The arrows indicate the new equilibrium point rj for each value of the
external force. Vertical axis is in units of the interaction potential at the minimum
point.

d2
o) = 90+ | g gE| o
1 d3
+§ 'dr—ﬁ N (T—TQ)B—I-...
1 g2
~ ¢(ro) + 3 d_rf . (r —ro)?, (1.5)

where in the second, approximate equality, we have used the fact that
d¢/dr(rg) = 0, and we have dropped the higher order terms in the Tay-
lor expansion. We are thus left with a harmonic potential approximation for
the interaction, that depends quadratically on the square of the displacement
u = r — 1o from equilibrium.

For the Lennard—Jones potential, the curvature is given in terms of the
equilibrium spacing and binding energy by

d?¢ Ey
w2, =P (1.6)

In Fig. 1.3 we show the harmonic approximation to the Lennard—Jones po-
tential; the approximation is seen to work well for very small displacements
from equilibrium, but rapidly fails as one moves further away.

In the presence of a weak external force, the equilibrium point shifts to
where dUyot/dr = 0; using the expansion (1.5) for the interaction potential,
this is when
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Fig. 1.3. Harmonic approximation (dotted line) to the Lennard-Jones potential.

d2¢
—fext + ar? (r—mo) =0, (1.7)
To
or
1 1
UET—T0= erxt :—_Efext- (1.8)

We thus find that the displacement u from equilibrium, for small forces fext,
is linear in the external force, with a response in inverse proportion to the cur-
vature of the interaction potential ¢(r). The interatomic potential is therefore
equivalent to a spring with spring constant k, with restoring force proportio-
nal to the displacement. Applied to argon, the curvature, or equivalently the
spring constant, is given by d2¢/dr?(ro) = 52 meV/A?, with an equivalent
spring constant of k = 0.83 N/m.

The linear response for small displacements u is a generic property of
almost all solids, and holds for complex single-crystal materials as well as for
amorphous solids made of plastics and proteins.

1.1.2 Dynamic Motion

We now consider the dynamical behavior of the atoms in our model inter-
action potential. What this means is that we will allow the atoms to move,
so that they have a kinetic energy T in addition to the potential energy
U = ¢(r).

We assume that the center of mass of our system remains at rest. With the
atoms at distances r; and ry from the origin, their separation is r = ro —r1.
If the atoms have masses M; and Ms, the location of the center of mass T¢m
is the weighted sum of their locations, or

_ Ml’f‘l + M2r2

_ 1.9
Tem M + My ( )



