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Preface

This textbook provides a unified control theory of linear and nonlinear multivariable feedback
systems, also called multi-input multi-output (MIMO) systems, as a straightforward extension
of the classical control theory. The central idea of the book is to show how the classical
(frequency- and root-domain) engineering methods look in the multidimensional case, and
how a practising engineer or researcher can apply them to the analysis and design of linear and
nonlinear MIMO systems.

At present, there is a great number of fundamental textbooks on classical feedback control
as applied to single-input single-output (SISO) systems, such as the books by Dorf and Bishop
(1992), K. Ogata (1970), Franklin, Powell and Emami-Naeini (1991), Atherton (1975) and
E. Popov (1973), the last two being devoted to nonlinear SISO systems, and many others. A
general quality of all these books is a united conceptual approach to introducing the classical
control theory, as well as clearly indicated branches of that theory; in fact, a lecturer can
successfully use any of these books in teaching his course on related subjects. On the other
hand, there are many remarkable textbooks and monographs on multivariable feedback control,
but the situation here is not so plain. Historically, at the outset, the development of multivariable
control theory was conducted in different ways and manners, varying from massive efforts to
extend directly the basic classical methods and techniques, to no less massive attempts to
reformulate radically and even ‘abolish’ the classical heritage of control theory. Besides, the
initial stages of formation of multivariable control essentially coincided with the advent of
state-space methods and approaches, and with rapid development of optimal control theory,
equally dealing with SISO and MIMO systems. At last, at around that time, there the robust
control theory also applicable to both SISO and MIMO systems emerged. As a result, the
notion of ‘modern’ multivariable control is so manifold and embraces so many directions
and aspects of feedback control that it is difficult to list them all without running the risk of
missing something significant. Nevertheless, it is obvious that optimal, adaptive and robust
methods (and their variations) are predominant in the scientific and technical literature, and
advances in these methods considerably exceed the achievements of the ‘classical’ branch in
multivariable control. At the same time, it should be acknowledged that modern MIMO control
theory just ‘jumped over’ many important problems of the classical theory and now there is an
evident gap between the topics presented in most textbooks on SISO control and those in many
books on multivariable control (Skogestad and Postlethwaite 2005; Safonov 1980; Maciejowski
1989, etc.).

The goal of this book is to bridge that gap and to provide a holistic multivariable control
theory as a direct and natural extension of the classical control theory, for both linear and
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nonlinear MIMO systems. The need for such a book is particularly evident now that modern
computer aids and specialized programming languages (first of all, MATLAB®1) allow con-
trol specialists to restore and successfully use in practice many powerful classical approaches
which in fact have been disregarded recently as useless and non-effective, especially for mul-
tivariable control. That is why the author hopes that a text in which many key problems of
multivariable control are introduced and explained in common terms and notions of the classi-
cal control would be helpful for practitioners and researchers engaged in control engineering,
as well as for lecturers on both classical and modern control.

The textbook can be used for an advanced undergraduate (fourth-year) course or for an
introductory graduate course in multivariable feedback control. The necessary prerequisites
for understanding the book contents are a typical introductory course in classical control and
some elementary knowledge of the theory of matrices and linear spaces. The presented material
has partially been used in an undergraduate multivariable control course given by the author in
the Cybernetics Department at State Engineering University of Armenia (SEUA) since 2002.

The restrictions on the book’s length forced the author to exclude some material that had
been regarded as very useful and appropriate for the textbook. The matter concerns problems,
exercises, appendices on the theory of matrices and functional analysis, etc. All these materials
are available over the internet from the author’s home page (www.seua.am/ogasp).

All worked examples in the book were solved with the help of graphical user interface (GUI)
ControlSysCAD, working in the MATLAB environment, which was developed by the author. A
very simplified version of that GUI destined for solving simple exercises on two-dimensional
linear MIMO systems of different structural classes is also available over the internet from the
author’s home page.

The author will be grateful for any comments, remarks, discovered errors, etc. concerning
the book. Please send them to the author’s email address (ogasparyan @seua.am).

The companion website for the book is http://www.wiley.com/go/gasparyan

1 MATLAB® is a registered trademark of The MathWorks, Inc.
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1

Canonical representations and
stability analysis of linear MIMO
systems

1.1 INTRODUCTION

In the first section of this chapter, we consider in general the key ideas and concepts concerning
canonical representations of linear multi-input multi-output (MIMO) control systems (also
called multivariable control systems) with the help of the characteristic transfer functions
(or characteristic gain functions) method (MacFarlane and Belletrutti 1970; MacFarlane
et al. 1977; MacFarlane and Postlethwaite 1977; Postlethwaite and MacFarlane 1979). We
shall see how, using simple mathematical tools of the theory of matrices and linear algebraic
operators, one can associate a set of N so-called one-dimensional characteristic systems acting
in the complex space of input and output vector-valued signals along N linearly independent
directions (axes of the canonical basis) with an N-dimensional (i.e. having N inputs and N
outputs) MIMO system. This enables us to reduce the stability analysis of an interconnected
MIMO system to the stability analysis of N independent characteristic systems, and to
formulate the generalized Nyquist criterion. We also consider some notions concerning the
singular value decomposition (SVD) used in the next chapter for the performance analysis
of MIMO systems. In the subsequent sections, we focus on the structural and geometrical
features of important classes of MIMO systems — uniform and normal systems — and derive
canonical representations for their transfer function matrices. In the last section, we discuss
multivariable root loci. That topic, being immediately related to the stability analysis, is also
very significant for the MIMO system design.

1.2 GENERAL LINEAR SQUARE MIMO SYSTEMS
1.2.1 Transfer matrices of general MIMO systems

Consider an N-dimensional controllable and observable square (that is having the same number
of inputs and outputs) MIMO system, as shown in Figure 1.1. Here, ¢(s), f(s) and &(s)

Linear and Nonlinear Multivariable Feedback Control: A Classical Approach Oleg N. Gasparyan
© 2008 John Wiley & Sons, Ltd



4 Canonical Representations and Stability Analysis of Linear MIMO Systems

P(s) £(s) f(s)
[ ) W(s)

Figure 1.1 Block diagram of a general-type linear MIMO feedback system.

stand for the Laplace transforms of the N-dimensional input, output and error vector signals
(), f(t) and &(t), respectively (we shall regard them as elements of some N-dimensional
complex space CN); W(s) = {wk-(s)} denotes the square transfer function matrix of the open-
loop system of order N x N (for simplicity, we shall call this matrix the open-loop transfer
matrix) with entries wy,(s) (k,r =1,2,..., N), which are scalar proper rational functions
in complex variable s. The elements wy(s) on the principal diagonal of W(s) are the transfer
functions of the separate channels, and the nondiagonal elements wy, (s) (k # r) are the transfer
functions of cross-connections from the rth channel to the kth.

Henceforth, we shall not impose any restrictions on the number N of separate channels, i.e.
on the dimension of the MIMO system, and on the structure (type) of the matrix W(s). At the
same time, so as not to encumber the presentation and to concentrate on the primary ideas,
later on, we shall assume that the scalar transfer functions wy,(s) do not have multiple poles
(we mean each individual transfer function). Also, we shall refer to the general-type MIMO
system of Figure 1.1 as simply the general MIMO system (so as not to introduce any ambiguity
concerning the fype of system, which is conventionally defined in the classical control theory
as the number of pure integrators in the open-loop system transfer function).

The output f(s) and error &(s) vectors, where

e(s) = @(s) — f(s), (1.1)

are related to the input vector ¢(s) by the following operator equations:

f(s) = D(s)p(s), e(s) = Pe(s)p(s), (1.2)

where
O(s) = [I + W)™ W(s) = W(s)[I + W(s)]™! and (1.3)
O,(s) = [I + W(s)]™! (1.4)

are the transfer function matrices of the closed-loop MIMO system (further, for short, referred
to as the closed-loop transfer matrices) with respect to output and error signals, and I is the
unit matrix. The transfer matrices ®.(s) and ®(s) are usually called the sensitivity function
matrix and complementary sensitivity function matrix.!

By straightforward calculation, it is easy to check that ®,(s) and ®(s) satisfy the relationship:

D(s) + P(s) = 1. (1.5)

! The terms sensitivity function and complementary sensitivity function were introduced by Bode (1945).
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From here, we come to the important conclusion that it is impossible to bring to zero the system
error if the input signal is a sum (mixture) of a reference signal and disturbances, where the
latter may be, for example, the measurement or other noises. Indeed, if the system ideally tracks
the input reference signal, that is if the matrix ®,(s) identically equals the zero matrix, then,
due to the superposition principle (Ogata 1970; Kuo 1995), that system also ideally reproduces
at the output the input noise [since, if ®,(s) = 0, then the matrix ®(s) in Equation (1.5) is equal
to the unit matrix /]. A certain trade-off may only be achieved provided the input reference
signal and the measurement noise have nonoverlapping (at least, partially) frequency ranges.>

1.2.2 MIMO system zeros and poles
1.2.2.1 Open-loop MIMO systems

A single-input single-output (SISO) feedback control system with the open-loop transfer func-
tion W(s) is depicted in Figure 1.2. That system may be regarded, if N = 1, as a specific case of

W(s)

v

Figure 1.2 Block diagram of a SISO control system (N = 1).

the MIMO system of Figure 1.1. The transfer function W(s) is a rational function in complex
variable s and can be expressed as a quotient of two polynomials M(s) and D(s) with real
coefficients:

M(s)

W(s) = D&Y’

(1.6)

where the order m of M(s) is equal to or less than the order n of D(s), that is we consider only
physically feasible systems.

From the classical control theory, we know that the poles p; of W(s) are the roots of the
denominator polynomial D(s), and zeros z; are the roots of the numerator polynomial M(s)
(Ogata 1970; Kuo 1995). In the case of usual SISO systems with real parameters, complex
poles and zeros always occur in complex conjugate pairs. Obviously, at the zeros z;, the transfer
function W(s) vanishes and, at the poles p;, it tends to infinity (or 1/W(s) vanishes).

In the multivariable case, the situation is not so simple, and this refers to the MIMO Sys-
tem zeros in particular. This indeed explains the large number of papers in which there are
given different definitions and explanations of the MIMO system zeros: from the state-space
positions, by means of polynomial matrices and the Smith-McMillan form, etc. (Sain and
Schrader 1990; Wonham 1979; Rosenbrock 1970, 1973; Postlethwaite and MacFarlane 1979;
Vardulakis 1991).

First, let us consider the open-loop MIMO system poles. We call any complex number p;
the pole of the open-loop transfer matrix W(s) if p; is the pole of at least one of the entries

2 The MIMO system accuracy is discussed in Chapter 2.
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wy., () of the matrix W(s). In fact, if at least one of the entries wy,(s) of W(s) tends to infinity as
s — p;, then W(s) tends (strictly speaking, by norm) to infinity. Therefore, p; may be regarded
as the pole of W(s). As a result, we count the set of the poles of all wy,(s) as the poles of W(s).
Such a prima facie formal definition of the MIMO system pole seems evident but it leads, as
we shall see later, to rather interesting results.

Let the transfer matrix W(s) be expanded, taking into account the above assumption that
wy,(s) have no multiple roots, into partial fractions as:

n Ki
W(s):Z——+D, (1.7)
i=1 S — Pi

where n is the total number of simple poles of W(s);

K; = lim (s — p;))W(s) (1.8)
S=>Ppi

are the residue matrices of W(s) at the finite poles p;; and the constant matrix D is

D = lim W(s). (1.9)
§—>00
Note that the matrix D differs from the zero matrix if any of wy,(s) have the same degree of
the numerator and denominator polynomials.

The rank r; of the ith pole p; is defined as the rank of the residue matrix K;, and it is called
the geometric multiplicity of that pole. Among all poles of the open-loop MIMO system, of
special interest are those of rank N, which are also the poles of all the nonzero elements wy,(s).
In what follows, we shall call such poles the absolute poles of the open-loop MIMO system. It
is easy to see that if a complex number p; is an absolute pole of the transfer matrix W(s), then
the latter can be represented as

W(s) = —1—-W1(S), (1.10)
S — pi

where the matrix W (p;) is nonsingular [that matrix cannot have entries with poles at the same
point p; owing to the assumption that wy, (s) have no multiple poles].

In a certain sense, it is more complicated to introduce the notion of zero of the transfer
matrix W(s), as an arbitrary complex number s that brings any of the transfer functions wg,(s)
to vanishing, cannot always be regarded as the zero of W(s). We introduce the following two
definitions:

1. A complex number z; is said to be an absolute zero of the transfer matrix W(s) if it reduces
the latter to the zero matrix.

2. A complex number z; is said to be a local zero of rank k of W(s), if substituting it into
W(s) makes the latter singular and of rank N — k. The local zero of rank N is, evidently, the
absolute zero of W(s).3

3 The notion of MIMO system zero as a complex number z that reduces at s = z, the local rank of the matrix W (s),
is given, for example, in MacFarlane (1975).
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Let us discuss these statements. It is clear that if a number z; is an absolute zero of W(s), then
we can express that matrix as

W(s) = (s — zi))Wi(s), (1.11)

where W (z;) differs from the zero matrix and has rank N. In other words, the absolute zero
must also be the common zero of all the nonzero elements wy, (s) of W(s).

We are not quite ready yet for detailed discussion of the notion of the open-loop MIMO
system local zero, but, as a simple example, consider the following situation. Let z; be the
common zero of all elements wy,(s) of the kth row or the rth column of W(s), i.e. wy,(z;) = 0
when k = const,r =1,2,..., N, or when r = const, k =1,2,..., N. Then, obviously, if
the rank of W(s) is N for almost all values of s [i.e. the normal rank of W(s) is N], then the
matrix W(z;) will have at least rank N — 1, since, for s = z;, the elements of the kth row or the
rth column of W(z;) are zero. Structurally, the equality to zero of all elements of the kth row of
W(s) means that for s = z;, both the direct transfer function w(s) of the kth channel and the
transfer functions of all cross-connections leading to the kth channel from all the remaining
channels become zeros. Analogously, the equality to zero of all elements of the rth column of
W(s) means that for s = z;, both the direct transfer function w,,(s) of the rth channel and the
transfer functions of all cross-connections leading from the rth channel to all the remaining
channels become zeros. This situation may readily be expanded to the case of local zero of
rank k. Thus, if, for s = z;, the elements of any k rows or any k columns of W(s) become zeros,
then z; is the local zero of rank k. At this point, however, a natural question arises of whether
local zeros of the matrix W(s) exist which reduce its normal rank but do not have the above
simple explanation and, if such zeros, then what is their number?

A sufficiently definite answer to that question is obtained in the following subsections, and
here we shall try to establish a link between the introduced notions of the open-loop MIMO
system poles and zeros, and the determinant of W(s). It is easy to see that both the absolute
and local zeros of W(s) make detW(s) vanishing, since the determinants of the zero matrices
as well as of the singular matrices identically equal zero. Besides, from the standard rules of
calculating the determinants of matrices (Gantmacher 1964; Bellman 1970), we have that if
some elements of W(s) tend to infinity, then the determinant detW(s) also tends to infinity. In
other words, the poles of W(s) are the poles of detW(s). Based on this, we can represent detW(s)
as a quotient of two polynomials in s:

Z(s)
detW(s) = — (1.12)
P(s)
and call the zeros of W (s) the roots of the equation
Z(s)=0 (1.13)
and the poles of W(s) the roots of the equation
P(s) = 0. (1.14)

Let us denote the degrees of polynomials Z(s) and P(s) as m and n, respectively, where, in
practice, m < n. We shall call Z(s) the zeros polynomial and P(s) the poles polynomial, or the
characteristic polynomial, of the open-loop MIMO system.



