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Preface

The present work had its origin in the one-year graduate course in compressible
flow which the author has taught for a number of years at the University of
Connecticut. The work is somewhat broader in scope than most works in the
field. In addition to the conventional material on perfect gas flow, the book con-
tains chapters on the Navier—Stokes equations, transonic flow, laminar boun-
dary layers, turbulent boundary layers, real gas effects and computational
methods.

In the basic theory the approach has been to derive the equations in their
most general form first and then to apply the results to particular cases. Thus,
the momentum, energy, and continuity equations are first derived for three-
dimensional unsteady flow and the results are then reduced to the particular
cases of quasi-one-dimensional steady flow, steady two- and three-dimensional
flow, unsteady one-dimensional flow, and normal and oblique shocks. In order
to make the derivations more readily comprehensible, they are presented in
more detail than usual.

Every attempt has been made to discuss the physical significance of the
derivations as opposed to a merely formal presentation of the mathematics.
Where philosophical or logical questions arise, these are brought out and dis-
cussed.

The derivation of the Navier—Stokes equation is presented in some detail
in a manner which, it is hoped, will enable the reader to readily grasp the
significance of this important equation. In the chapters on transonic flow,
laminar boundary layers, and turbulent boundary layers, the most important
theories are discussed, at some length, in preference to presenting a cursory over-
view of as many works as possible. Emphasis is placed on presenting experi-
mental results as well as theoretical results as checks on the validity of the
theories. In Chapter 9 the properties of real, as opposed to ideal gases are dis-
cussed in detail, as are flows where real gas effects are significant. Finally, a
chapter on numerical methods is presented, since numerical analysis has
become an indispensable part of the solution of problems in compressible flow.

The present work will appeal mainly to graduate students and workers in the
field, but may also be used by advanced undergraduates. A background in vector
analysis, ordinary and partial differential equations is desirable as well as a
knowledge of elementary fluid mechanics and thermodynamics.

STEFAN SCHREIER

Storrs, Connecticut
March 1981
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1 The Basic Equations

The Nature of the Problem

A compressible fluid differs from an incompressible one in that the density p
of the fluid is not constant. As a result, an additional unknown is introduced.
In incompressible flow it is found that only two natural laws are required for the
solution of problems: the law of the conservation of mass and the law of the
conservation of momentum. These laws are usually expressed as the continuity
equation

VV=0 (1)
and the momentum equation
DV
- 2
Py = VP )

If p is known, there are only two unknowns in incompressible flow: the pressure
p and the velocity V. Equations (1) and (2) are, therefore, sufficient to render the
problem determinate.

In compressible flow, the addition of another unknown, p, requires the
introduction of some other relation. Such a relation exists in the law of the
conservation of energy or the first law of thermodynamics. For closed systems
this relation is usually written

dQ =dE +dwW (3)

where d¢Q represents the heat added to the system, d W the work done by the
system, and dE the change in the energy of the system. The bar through the
d in dW and 40 indicates that these quantities are not exact differentials—in
other words, Q and W are not properties of the system. The quantity E, in most
compressible flow problems, consists of the internal energy E, and the kinetic
energy ;mV/?. Thus, if the heat added and the work done are presumed given,
the use of equation (3) adds one new unknown to the system of equations, the
internal energy E,. The internal energy, however, is a state property; that is, an
intrinsic property of the gas independent of its history. Pressure, temperature
and density, for example, are state properties. Heat and work are not. From
elementary thermodynamics we know that for a homogeneous gas, any two
state properties are sufficient to determine all the rest. Hence, the internal
energy may be related to the pressure and density through an equation of state
of the form,

E,=E,(p.p) @)
1



2 The Basic Equations

Thus, through the introduction of equations (3) and (4), the system of equations
is once again rendered determinate: that is, there are now four equations and
four unknowns: p, p, E,, and V.

The equations cited above apply only to the simplest types of compressible
flow problems—those in which the fluid is homogeneous and inviscid. The
presence of viscosity and chemical reactions, for example, introduces additional
unknowns and renders the problem more complicated. It may thus be seen
that problems in compressible flow tend to be more complicated than those in
incompressible flow.

Inviscid Compressible Flow—Derivation of the Governing Equations

The equations governing the inviscid compressible flow of a homogeneous
fluid were first derived by Euler [1]. Euler considered all the properties of the
fluid to be continuous functions of time and space. Consider, for example, the
coordinate system shown in Figure 1 and assume a fluid to be flowing through it.

4

Fluid fiow

X

Figure 1. Fluid flow in a Cartesian coordinate system.

Each point in the flow can be described by the values of x,y and z at that point.
Under the assumptions of Euler, then, the flow properties may be described by
functional relations of the form

V=V(x,yz1), T=T(x,y,zt), p=pxyzt)

and so on. By filling in numbers for x, y, z, and ¢, the value of each property at a
particular point in space at a particular time is determined.

It should be pointed out that this is not the only possible approach to the
problem which may be taken. An alternative would be to describe the properties
of the fluid not as functions of a point in space, but as functions of a particular
fluid particle. A particle of fluid might be identified, for example, by its position
in space at a particular time, say, t = 0. At that time the particle may be located in
space at a point x = ¢,y =n,z=/{_. The properties of the flow may then be
described by functional relations of the form

V=Vinin, T=TEnl1, p=p&ni
This is the approach taken by Lagrange [2].



Inviscid Compressible Flow-——Derivation of the Governing Equations 3

The approach taken by Euler assumes that the fluid is a continuum. Strictly
speaking, this assumption is not correct since, according to the molecular
theory of matter, a fluid is made up of discrete particles called molecules. Thus,
one cannot speak with accuracy about fluid properties at a point. As long as the
average distance between molecules is small compared to the scale of the prob-
lem, however, this difficulty is more apparent than real. If, for example, we are
dealing with the flow over a wing with a ten foot chord, and the average distance
between molecules is a millionth of an inch, then, for all practical purposes,
the fluid may be considered a continuum. If, on the other hand, the distance
between molecules is on the order of a foot, then the situation is no longer so
clear. In applying the continuum assumption, we must be careful that the average
distance between molecules is small compared to the scale of the problem.

Let us now derive the equations governing the flow of a homogeneous,
inviscid, compressible fluid. The first law to be applied is the law of the conserva-
tion of mass. This law states that the change in the amount of mass in a given
volume over a period of time equals the difference between the amount of mass
which has entered the volume during that time, and the amount which has left.
Alternatively, one may say that the rate at which the mass in the volume is
changing equals the difference between the rate at which mass is entering the
volume and the rate at which mass is leaving. One may use the analogy of the
bucket with a hole in it (Figure 2). The rate of change of the amount of fluid

/7
A

Y
i

Figure 2. An example of the conservation of mass.

in the bucket is equal to the difference between the rate at which fluid is flowing
into the bucket through the hose and the rate at which it is flowing out through
the hole in the bottom.

Consider now a fixed volume ¥ in a cartesian coordinate system through
which the fluid is flowing (Figure 3). Let S be the surface of the volume and let n

b3

Fluid flow

X

Figure 3. Control volume in three-dimensional flow.



4 The Basic Equations

be the unit outward normal at any point of the surface. The net inflow of mass
into the volume is then given by,

—J‘ pV-ndS
s

where the subscript S indicates that the integral is taken over the surface.
The mass of the fluid in the volume ¥~ at any time is given by

f pdv
v

where the subscript ¥~ indicates that the integral is taken over the volume.
The rate of change of the mass within the volume is, thus,

0
— dyv’
ot L"

Hence, according to the law of the conservation of mass,

G,
— dy' =—| pV-
o ), p Lp nds

From vector calculus we know that
f pV-ndS:j VipV)d?+”
S v
Also, since 7" is not a function of ¢,

G, op
2 pav=| Lay
a )’ L P

Hence,
op .. .
—d¥ = —| V(p¥)dy
2 6t v

Now since ¥ is arbitrary, the equation must be valid for any ¥~, no matter how
small. This requirement can only be satisfied if the integrands are equal at
every point. Thus,

op
Ot

This is the continuity equation for a homogeneous, compressible fluid as it is
most commonly written.

We now turn to the second fundamental law, that of the conservation of
momentum. This law was first enunciated by Newton [3] and nowadays is
most commonly written in the form,

F =ma (6)

+V(pV)=0 (5)



Inviscid Compressible Flow— Derivation of the Governing Equations 5

As stated in equation (6), this law applies to a closed system. A closed system is
one which always consists of the same particles of mass or molecules. In fluid
mechanics, however, we are usually interested in open systems. An open system
is one into which mass is entering and/or from which mass is leaving. A pipe
with water flowing through it would be an open system. We are, thus, faced
with the task of restating the law in a form valid for open systems.

The easiest way of applying laws valid only for closed systems to open
systems is to apply them to each particle of the open system as it moves along.
As long as we stay with the same particle, that particle represents a closed
system. If we consider a particle of fluid enclosed by a volume d¥", the mass
of that particle will be

pdy”

When it comes to expressing the acceleration, however, we encounter a
problem in the Eulerian system. As will be recalled, in the Eulerian system,
the velocity was expressed as a function of x, y, z, and ¢.

V=V(x,y,zt)

This represents a velocity at a particular point in space at a particular time.
Thus, the expression

ov

ot
does not represent the acceleration of the particle; rather, it represents the
rate of change of the velocity at a particular point in space.

Consider, on the other hand, the Lagrangian system. In this system, the
velocity is given by

V=V(inin

This represents the velocity of a particular particle rather than the velocity
at a particular point in space. Hence, the expression

ov
ot

in Lagrangian coordinates represents the acceleration of a particular particle.
It might be considered that because of the ease with which the acceleration
may be expressed in the Lagrangian system, this system is preferable to the
Eulerian one. In most practical problems, however, other factors, such as the
formulation of boundary conditions, enter in, which make the Eulerian system
preferable.

Let us, therefore, attempt to express the acceleration of a particle in the
Eulerian system. Given that

V=V(x,y,z1)
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it follows that

A% A% ov ov
dV = ——dx + — — ——dt
F x + dy-i—a dz+a 7
This represents the difference between the velocity at the point x, y, z at time ¢
and the velocity at the point x 4 dx, y + dy,z + dz at time ¢ + dt. It should be
pointed out that this statement is accurate only in the limit as dx,dy,dz, and dt
go to zero. Otherwise, it is approximate. Let us now divide both sides of equation

(7) by dt. Then,
dvV  oVdx 0oV dy+6de+6V
dt  oxdt  Oydt Ozdt Ot
Since the ratios of dx,dy,dz, and dt to each other are arbitrary, let us choose
them in such a way that the moving particle of fluid located at x,y,z at time ¢
will be located at x + dx,y + dy,z + dz at time ¢t + dt. dV will then represent
the change in velocity of that particular particle in time dt. If we now take the
limit as dx,dy,dz, and dt go to zero, we get
dx dy ﬁ B
a” " w”t @
where

V=iu+jo+kw

and dV/dt will then represent the acceleration of a particular particle in the
Eulerian system.

dv ov ov oV oV DV

Ty e e T e ? ®)
When the particular values
de_ oy de

a0 AT A
are used, as in equation (8), then dV/dt is usually written
bv
Dt
to distinguish it from other values of dV/dt. DV/Dt is called the substantial

derivative.
It may be noted that the value of the operator

b_,2 +v ¢ + wi-i-g

Dt “oax oy oz T an
is not restricted to the velocity. It may be applied to any property of the fluid
and will then give the rate of change of that property for a particular particle
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of fluid. Thus,

Dp

Dt
represents the rate of change of the density of a particular particle, as it moves

along,
DT

Dt
represents the rate of change of the temperature of a particular particle, and
SO on.

Having expressed the mass and acceleration of a particular particle in the
Eulerian system, we may now apply the law of the conservation of momentum,
equation (6), to that particle:

DV
F=ma=pdV  =fdr ©)

In order to evaluate the force F, it will be easier for us to work in terms of
integrals. Let us, therefore, return to the situation shown in Figure 3. It is
important to note that the volume ¥~ is fixed in space. Applying equation
(9) to each particle of fluid in the volume ¥ at a given time we have,

v
f fdv = f PAM
, LD

In the absence of viscous, chemical, electrical, magnetic or body forces on the
fluid in volume 7", the only force acting on the fluid is that of pressure. Since
the pressure of adjacent fluid elements within the volume concels out, only the
pressure acting on the surface of the volume ¥~ need be taken into account. If
n is the unit outward normal, the force acting on the volume ¥~ will be given by

jfd%‘z —jpndS
v S

JpndSzj Vpd?
s v

\% .
f pLdV‘z —j Vpdy
v Dt v

and since this relation must be valid for any volume ¥~ no matter how small,
DV
Dt

From vector calculus,

Hence we have

- Vp (10)

This equation is sometimes referred to as the Euler equation.
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If a body force pg is present, the total force acting on the volume 7~ becomes

j fdv = f Vpd"t’"+j pgd?”
v Vv v

and equation (10) becomes,

DV
P v/ 10z
P D p+ g (10a)

Let us now turn our attention to the third fundamental law, that of the
conservation of energy. As pointed out earlier, the first law of thermodynamics
may be written for a closed system in the form

dQ = dE + dW (11)

Once again we must rewrite this law for an open system in order for it to be
useful in compressible flow. If the heat transfer 4Q, the change in energy dE,
and the work dW take place in time dt, we may write

dQ dE n aw
dt — dt = dt
Let us now take for our system the mass inside volume ¥~ as shown in Figure 3,
at some particular time t. If the heat enters or leaves the system only through
conduction across its surface S, then we may write, according to Fourier’s Law,
aQ
dt

where k is the thermal conductivity and n the unit outward normal on the surface.
From vector calculus we know that

(12)

JkVT-ndS (13)
5

kaT-ndSzf VkVTdV (14)
S v
Now let e be the energy per unit mass of the system. Then,
E D
dE_ [ pPe 4y (15)
dt y Dt

In the absence of chemical, electrical, viscous, magnetic, or body forces, the
work done by the system will be entirely against the surrounding pressure
forces. Hence,

aw
A V- 16
ir Lp ndS (16)

Again, from the divergence theorem,

fpv-nds :j V(pV)d¥ (17)
S v
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Combining equations (12) through (17)

J‘ VkVTdYy = f p—a"f +J V(pV)yd¢v” (18)
v v

Since this equation must be valid for any volume ¥ no matter how small,
D
—V-kVT:pr+V(pV) (19)

This is one form of the energy equation.

The energy equation is sometimes written in a different form, more con-
venient for use in some engineering calculations. The energy may be broken
up into its component parts for a moving system. For example, if velocity and
gravity are present,

=1V>+e +gZ (20

where V represents the magnitude of the velocity, e, the internal energy per unit
mass, and gZ the potential energy per unit mass due to gravity. Z represents the
distance in the — g direction. Also,

V(pV)=p(V-V)+ V-Vp
and from the momentum equation (10a)

DV D Dz
\A VVp=Vp-—=p (VY= —pg—- V'V
PE—VVp=Vop=pGV7) P9y p
Also, we need not restrict heat addition to conduction across the boundary.
Heat may also be added or subtracted by chemical reaction. Let us, therefore,
indicate the heat added or subtracted per unit volume per unit time by the
more general symbol §. Thus we may write,

g= pD[e+ Vi+gZ]+pVV—pp [2V2+gZ] 21

It is of interest to observe here that the pressure work, V(pV), divides naturally
into two parts: VVp, which is the work of increasing or decreasing the kinetic
energy of the system, and pV'V, which is the work of compressing or expanding
the system. This may be illustrated by the use of a somewhat crude example.
Consider a slug of gas flowing in a pipe of cross section 4:

V1 —— | C— Va
A System ——e—3F|ow direction
j A p— l—— P2

Figure 4. A slug of gas in one-dimensional flow.
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In this case,
JpV-ndSz(szz—prl)A (22)
s

The right-hand side of equation (22) may be rewritten

V V
(szz—prl)A=A(pz—pl)< By 2)+A<”1+”2)(V1—V2) (23)

2 2

A(p, — p,) represents the net force on the slug, and (V, + V ,)/2 the average
velocity. Hence, the first term on the right-hand side of equation (23) represents
the rate of work going to accelerate the slug, (p, + p,)/2 represents the average
pressure on the slug and V, — V, represents the rate of deformation. Hence,
the second term on the right-hand side of equation (23) represents the work
going to deform the slug,

Returning now to equation (21), the kinetic and potential energy cancel
and we have,

De
(1_;)—+pVV (24)
Dt
From the equation of continuity,
1 Dp
VV= — - —
p Dt

and, adding and subtracting p(D/Dt)(p/p).

pDp D(p D (p
pvv == ZEY_ 2P
th+th<p> th p

_Dp Dfp
= —| = 24
P Dt<p> (242)
Substituting in equation (24)
De, D(p Dp
—t -— 25
=p +th< ) Dt (25)
The specific enthalpy # is defined by
h=e+" (26)
p
Hence
. D py Dp
4= "E("' + p) )
or
D
bh_Dr 4 27)

Por = Dr

It is in this form that the energy equation is most frequently encountered.
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The Navier-Stokes Equation

The equations of Euler, which we have derived above, are deficient in one
important respect: they neglect viscosity. This does not mean that they are not
useful. In many problems in gas dynamics, the effect of the viscosity is small.
However, there are certain cases in which the effect of viscosity is important
and hence cannot be neglected. We are thus led to seek an amendation of the
Euler equations to include the effects of viscosity. Such an amendation was
first made by M. Navier [4] for incompressible flow. In a paper presented to
the Royal Academy of Sciences (Paris) on March 18, 1822, Navier pointed out
the deficiencies of the equations which Euler had derived sixty-five years
earlier, citing as an example the flow from a long-necked vessel which, observa-
tion indicated, was considerably slower than predicted by the equations of
Euler (the distinction between viscous and inviscid flow was, of course, known
to Euler, as well as to d’Alembert twenty years earlier). In order to correct for
these discrepancies, Navier proposed a molecular model of matter which is not
in accord with modern views on the subject. Nevertheless, using this model,
he was able to derive the equations which now bear the name Navier-Stokes
equations in the incompressible case, which experiment has proven to be valid
and which, still today, may be described as the fundamental equations of
fluid dynamics.

In 1845, G. G. Stokes [5] rederived the equations of Navier, using however a
macroscopic rather than a molecular hypothesis regarding viscosity, and
extending the equations to the case of compressible flow.

Before proceeding to the derivation of the Navier-Stokes equations, as the
equations derived by Stokes are now called, let us review the modern theory
regarding the origin of viscosity. Viscosity may be defined as that quality of a
fluid which makes tangential stresses in the fluid possible. Consider first a
two-dimensional flow with a velocity gradient, as shown in Figure 5.

_______ 7 -

Figure 5. Velocity profile in two-dimensional flow.

The dashed line represents an imaginary dividing line between the upper and
lower parts of the fluid. Due to the random motion of the molecules, molecules
are always crossing the dashed line from above and below. However, those
molecules crossing the line from below will have, on the average, less momentum
in the direction of the flow than those crossing the line from above. There is,
thus, a net transfer of momentum across the dashed line, the momentum below
the dashed line being increased and the momentum above the line being decreas-
ed. It follows from Newton’s law of motion

d(mV)

F= dt

(28)
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that the fluid above the dashed line is exerting a force on the fluid below,
dragging it forward as it were, while the fluid below the dashed line is exerting a
force on the fluid above it, tending to retard it.

While the random motion of the molecules explains the presence of tangential
stresses in the fluid, it is important to realize that the same random motion
may also cause normal stresses. In order to see this let us take the case of a
one-dimensional flow with a velocity variation in the direction of the flow, as
shown in Figure 6. Let us now examine the flow from the vantage point of an

Flow

\_

x
Figure 6. Velocity gradient in the flow direction.

\

observer traveling with the flow. The observer will see molecules continuously
passing from the fluid in front of him to the fluid behind him, and vice versa,
due to the random motion of the molecules. However, the molecules passing
him from front to back will have less forward momentum than the molecules
passing him from back to front. Thus, the fluid in front of the observer is gaining
momentum while the fluid behind the observer is losing it. From equation (28),
therefore, it is apparent that the fluid in back of the observer is exerting an
accelerating force on the fluid in front of him, and the fluid in front of the observer
is exerting a retarding force on the fluid in back of him.

It might also be pointed out that the effect of this phenomenon in the present
case is to flatten the velocity profile, an effect which is of importance in the study
of shock waves.*

Having examined the viscosity qualitatively, we may now inquire into the
magnitude of the forces thus produced. It was first proposed by Newton [3]
that for the case shown in Figure 5, the magnitude of the viscous force is pro-
portional to the rate of strain. Consider the coordinate system shown in Figure 7.

y
Flow direction ————
Velocity profile
1 e
4
_ .
— =

X

Figure 7. Velocity profile in x-y coordinate
system.

*In liquids, intermolecular forces also play an important role in viscosity. In gases, this effect is less
important.



