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1 Introduction

A classifier system is a computational model of cognition based on the principles of
learning, intermittent feedback from the environment, and construction of internal mod-
els [73]. Classifier systems are relevant to the study of intelligence both as a theory
of cognition and as a parallel architecture for implementing artificial intelligence (AI)
models efficiently. These two aspects of classifier systems are interrelated, and it is their
interplay that is the subject of this book. The possibility that parallel architectures such
as classifier systems could implement AI models directly has focused attention on models
that might have both efficient hardware implementations and plausibility as intelligent
systems. The interplay between cognitive modeling considerations and the requirement
for reasonable performance is captured by the following questions: What kinds of ar-
chitectures can most effectively implement computational models of intelligence? What
computational systems are most appropriate for modeling intelligent behavior? How
does intelligent behavior emerge from the interactions of many components?

A classifier system consists of three layers: a parallel rule-based message-passing
system, the bucket-brigade learning algorithm, and the genetic algorithm. The message-
passing system is the fundamental computational engine of the system. It consists of
a database of condition/action rules, called classifiers, that read and write messages on
a short-term message list. At the second level is the bucket-brigade learning algorithm
which manages credit assignment among competing classifiers, distributing external re-
ward to the rules that contribute to successful behavior. The bucket brigade plays a
role similar to that of back propagation in neural networks. Finally, at the highest level
are genetic operators that create new classifiers. A more detailed description of classifier
systems appears in Chapter 2.

The message-passing part of a classifier system can be viewed as an abstract parallel
machine, and the learning algorithms as mechanisms for adjusting the configuration of
the machine over time. Under this view, each classifier is a separate processor, reading in
messages as input and writing out others as output. The system exhibits parallelism at
several levels, including: matching all of the bits in a message simultancously, matching
all conditions against one (or all) message(s) in the system simultaneously, and allowing
more than one classifier to be active simultaneously. In the expected case of many
classifiers and a small message list, massive parallelism is obtained through the parallel
matching process and implicit parallelism arises when many classifiers share the same
message.

The classifier system model can also be viewed as a parallel programming language in
which correct programs are either pre-specified (“programmed”) or learned dynamically.
Any particular configuration of a classifier system is interpreted as a program, or set of
instructions. There have been many attempts to apply machine learning algorithms to
the problem of generating and debugging computer programs. These efforts have been



largely unsuccessful due to the brittle nature of conventional programming languages, in
which a program’s behavior can be changed dramatically by one misplaced character. In
a classifier system, however, the restricted syntax of each instruction allows almost any
combination of instructions to form a legal program. Additionally, the relative position
of a single instruction does not determine its effect on the program. These two properties
of classifier systems support the notion of a program as an “ecology” of individual in-
structions, each instruction filling some useful niche in the overall program and evolving
in the context of the other instructions. This aspect of classifier systems emphasizes
their potential for complex high-level behavior, called “emergent computation,” in that
local interactions among primitive elements can result in a global computation.

Unlike many AT systems, low-level mechanistic models of intelligence, such as classi-
fier systems and connectionist networks, are based on analogies with biological, physical,
or psychological phenomena. Their representations and learning algorithms operate
at the “sub-symbolic” level in task environments where performance is measured in
terms of input/output pairs. Classifier systems are one of the few alternative models
to connectionism that have the same basic assumptions of massive parallelism, low-level
domain-independent learning algorithms, and an emphasis on dynamic processes over
static representations.

A common criticism of such systems is that they do not explicitly manipulate high-
level symbolic structures such as those that are the basis of many current knowledge
representation systems [18], programs that model human expertise [21], and systems
that perform goal-directed planning [40]. By describing a classifier system implementa-
tion that represents and processes high-level symbolic knowledge structures, this book
addresses the symbolic/subsymbolic issue. Here, the term “knowledge representation”
includes both the data structures which store information and the algorithms that ma-
nipulate those structures.

The learning properties of classifier systems have been explored in much greater detail
than the message-passing system. Holland described both the mechanics and underly-
ing theory of genetic algorithms [67], and more recently Riolo investigated the bucket
brigade’s ability to maintain hierarchies and sequences of rules [101]. Several other re-
searchers have recently explored the mathematics of bucket brigades [2, 51, 110]. This
book is concerned with the computational properties of the underlying parallel machine,
including computational completeness, programming and representation techniques, and
efficiency of algorithms. In particular, efficient classifier system implementations of sym-
bolic data structures and reasoning procedures are presented and analyzed in detail.

1.1 Parallelism and Classifier Systems

In Chapter 2, research on parallelism is described in terms of two categories: “coarse-
grained” and “fine-grained.” Coarse-grained architectures are composed of a small num-
ber of computationally complete heterogeneous processing units; they have a relatively
low rate of communication between processors and often execute asynchronously. Fine-
grained structures are composed of a large number of simple processors that also have a
high rate of communication. Complex behavior can emerge from fine-grained systems as
a higher-level phenomenon built up from the interactions among very simple units—an



example of emergent computation [47,48]. In these systems, the patterns of activity pro-
duced by the lower-level processors are only meaningful when interpreted at the higher
level. This is in contrast to coarse-grained organizations in which each processor works
on a part of a larger problem, but each part has meaning independently of the remainder
of the system. As an ecology of instructions, classifier systems illustrate many of the
features of emergent computation [49].

Classifier systems provide an excellent example of fine-grained parallelism. The un-
derlying action of the system is extremely simple, yet its global behavior can be highly
complex. Each processor is limited computationally and there are many of them in a
typical classifier system. Each unit (classifier) is locally controlled because its local prop-
erties (the condition and action parts of the classifier) determine which messages it will
match and which messages it will produce.

The organization of information into fine-grained units is important for systems that
learn. As Holland [67] and Lenat [83] have both pointed out, it is desirable to build
up representations out of small units, or building blocks, so that simple learning rules
can be applied to the parts rather than to their aggregates. Thus, it is reasonable to
expect that the fundamental units of such systems will be “fine-grained.” From the
architectural point of view, fine-grained parallel models are promising implementation
vehicles because they allow the large amounts of parallelism that are required to make
experimental systems useful in real-time settings. Fine-grained organizations are appro-
priate for knowledge representation systems in which small amounts of information are
added incrementally to existing systems. Additional processing power can be added as
the system grows and high-level behavior, such as that exhibited by semantic networks,
can be introduced through local interactions among small units.

Knowledge representation is an appropriate problem domain for studying the paral-
lelism of classifier systems. Knowledge-based systems have traditionally been applied to
static off-line domains where the facts of a case remain constant throughout the problem-
solving process. For example, there are many knowledge-based systems that diagnose
mechanical failures. These applications can be carried out with dedicated machines in
environments where real-time response is not required. These systems also enjoy the
advantage of a relatively stable knowledge base in which the system’s knowledge about a
given domain changes very slowly after the initial expertise has been “acquired.” Once
the description of a particular problem (e.g., symptoms of the mechanical failure) has
been entered, there is little additional information to be absorbed in the course of its
use. This approach is appropriate for problems that have a high payoff and can be solved
“off-line,” such as diagnosis, location of drilling sites, and configuring computers.

There is, however, increasing interest in applying knowledge-based systems technol-
ogy in domains that require real-time interactions with ongoing proces-
ses [1,27,41,56]. Examples include: natural language processing, autonomous vehicles
and other robots, process control, aircraft control, medical applications (e.g., monitoring
inhalation therapy), and intelligent computing environments. Current technology for
building knowledge-based systems does not lend itself to continuous, real-time operation
in dynamic environments. A system that is connected to its environment 1ust produce
output on a time scale that is appropriate for that environment. For example, it would
not be appropriate to spend two hours processing an alarm condition that needs to be



handled within seconds. Reliable real-time behavior is difficult to achieve because the
performance of Al systems can vary dramatically with different problem configurations.
For these systems to succeed, fast and frequent access to and on-line augmentation of
large, dynamic knowledge bases are required. This implies a need for knowlege bases that
have two properties: (1) predictable retrieval times and (2) the ability to add information
dynamically. The KL-ONE family of languages addresses both of these issues.

1.2 Classification and KL-ONE

At the heart of any knowledge representation system is the problem of classification. In

its most general formulation, classification relates incoming information to an existing
knowledge base. In network-based systems, this is the problem of deciding which links to
add between new and old nodes when incorporating new structures into the network. In
expert systems, the classification problem arises when, for example, the system is asked
to associate a set of symptoms with a particular disease [24]. In analogical reasoning
systems [23] the problem of classification is implicit in deciding how to organize the
growing data base of solved problems from which analogies can be drawn.

Classification is also central to retrieval operations in knowledge-based systeins. The
way in which information is organized determines how difficult various retrievals will
be. For example, a representation system that organizes cities according to size rather
than location will make it difficult to discover the name of all cities within a hundred
mile radius of Spokane. Thus, any system that organizes or modifies information on an
ongoing basis must address the issue of classification of new facts with respect to an
existing information structure and with respect to the ways in which it may later be
retrieved. In addition, access and storage patterns may change over time, creating a
need for databases that can adaptively reorganize themselves.

Of the various knowledge representation paradigms in use today, one family of se-
mantic network formalisms has focused directly on the problem of classification. This
is the KL-ONE family [14], including KL-ONETalk [40], Krypton [16], KL-TWO [120],
NIKL [103,77], KANDOR (93], BACK [90], LOOM [86,87] and CLASSIC [13,20]. In
all of these systems there is a well-defined notion of classification that allows the Sys-
tem to incorporate new concepts into existing network structures automatically. This
is important because manual classification is only feasible in small systems that are rel-
atively static, where the efficiencies of automation are not required. For large systems
that change over time, some sort of automatic classification procedure is required. The
classification issues in KL-ONE have been studied extensively and are reasonably well
understood. This feature makes the KL-ONE family a particularly good place to begin
considering the advantages or disadvantages of parallelism for knowledge representation
systems.

In the KL-ONE formalisms, a distinction is drawn between definitional and asser-
tional knowledge. This divides each system into two components: the definitional part,
where descriptions are stored, and the assertional part, where extensions (the actual ob-
jects being described) and facts about those extensions are represented. The definitional
part of the system is represented as a structured semantic network. Thus, a collection of
definitions can be thought of as a graph, and individual descriptions within the network



can be regarded as subgraphs of the larger structure. In the assertional part of the sys-
tem, propositions about the world (or some possible world) are represented as sentences
in a formal logic.

An instance of the general classification problem arises in KL-ONE systems when a
new description is added to the network. A new description must be attached to the
existing network someplace and classification is the process of deciding where that place
is [85]). The new description is a subgraph built out of other subgraphs whose relationship
to the existing network is already known. The classification procedure is reducible to the
problem of deciding subsumption relations between concepts (see Section 2.3will refer to
the technical decision question in KL-ONE, while in other contexts “classification” will
refer to the more general form of the problem described above.

Subsumption in KL-ONE is provably time-consuming. Brachman and Levesque
showed that complete subsumption is NP-Complete even for restricted languages of
the KL-ONE family [17]. More recently, Patel-Schneider showed that it is undecidable
[94]. As a result, existing subsumption algorithms are designed to be sound but not com-
plete. These results suggest that the more general problem of classification is inherently
difficult. However, formal complexity analyses are rarely available for corresponding
operations in most other systems (in other representation languages, classification is
usually not isolated as a separate well-defined operation). If the subsumption problem
can be made tractable through the use of parallelism, and if simple retrieval operations
can be made more efficient, then parallelism will be a demonstrably useful technique for
increasing the efficiency of current knowledge representation formalisms.

1.3 Subsymbolic Models of Intelligence

Classifier systems and connectionist models are both subsymbolic models of intelli-
gence in the sense that their primitive components have meaning only in the context
of the rest of the system. That is, an individual synapse in a connectionist model or a
single classifier in a classifier system is uninterpretable without the context of the rest
of the system. Intelligent behavior arises in subsymbolic systems through complex in-
teractions among many low-level components and is a collective property of the units.
The global behavior of the system is therefore intimately connected with functioning of
the underlying components. In contrast, the Physcial Symbol System Hypothesis asserts
that the essence of intelligence lies in the logic of symbol processing systems and that
the details of how such systems are implemented are not important [92].

There has been a great deal of debate over which of these two approaches is prefer-
able for modeling intelligent behavior (see for example [95,114]). There is a growing
consensus, however, that each view makes important contributions and that a full ac-
count of intelligent processes must take both into account [7]. The work reported here
contributes to the growing body of research that studies how the two approaches fit
together. Generally, these studies are existence proofs that show how connectionist ar-
chitectures can implement a given symbolic procedure. Examples include Shastri’s work
on evidential reasoning in semantic networks [109], Touretzky and Hinton’s connectionist
implementation of a production system interpreter [115], and other connectionist imple-
mentations of Al systems [32,116]. This work focuses on how symbolic structures can be



implemented efficiently in a subsymbolic massively parallel system. The criterion of effi-
ciency is important since virtually all intelligent systems operate in resource-constrained
environments of some form and cannot afford computationally unreasonable solutions.

1.4 Overview

This book focuses on the following specific questions:

(1) What are the basic computational properties of classifier systems?

(2) How does one represent symbolic structures with classifier systems?

(3) Can the parallelism of the classifier system be exploited to implement symbolic
reasoning efficiently?

(4) Which operations are efficient and natural in classifier systems and which are not?

In the following chapters, I show how classifier systems can be used to implement a
set of useful operations for the classification of knowledge in semantic networks. A subset
of the KL-ONE language was chosen to demonstrate these operations. Specifically, the
system performs the following tasks: (1) given the KL-ONE description of a particular
semantic network, the system produces a set of production rules (classifiers) that rep-
resent the network, and (2) given the description of a new term, the system determines
the proper location of the new term in the existing network. Chapter 5 describes these
two parts of the system in detail.

The implementation reveals certain computational properties of classifier systems,
including completeness, operations that are particularly natural and efficient, and those
that are quite awkward. The work shows how high-level symbolic structures can be built
up from classifier systems, and it demonstrates that the parallelism of classifier systems
can be exploited to implement them efficiently. This is significant since classifier systems
must construct large sophisticated models and reason about them if they are to be truly
“intelligent.”

The remaining chapters are organized as follows: (2) Background (3) Approach,
(4) Classifier Systems, (5) Classifier System Implementation of KL-ONE, (6) Analy-
sis of Results, and (7) Conclusions. The chapter on Background reviews previous results
and develops a framework for organizing various classes of parallelism. In addition, it
provides a general introduction to classifier systems and to the subset of KL-ONE that
was implemented. Chapter 3, Approach, describes how the implementation is organized
and the tools and methods that were used. Chapter 4 presents theoretical results and
practical algorithms for classifier systems that are independent of the KL-ONE part of
the project. Chapter 5 presents the implementation of KL-ONE using classifier systems.
Chapter 6 analyses the material of Chapters 4 and 5, and the final chapter contains the
conclusions.

The KL-ONE algorithms were implemented on top of the generic operations devel-
oped in Chapter 4 (Boolean operations, simple numerical processing, transitive closure,
and synchronization). As a result, the parallel algorithms for KL-ONE could be im-
plemented on any machine that supports efficient computation of these intermediate
operations. These intermediate operations are similar to those that Fahlman {38] has ar-
gued are necessary for “intelligent systems.” The ability to perform these couputations



efficiently in classifier systems demonstrates the appropriateness of classifier systems as
an architecture for artificial intelligence.

Parallel organizations are of interest to many areas of computer science, such as hard-
ware specification, programming language design, configuration of networks of separate
machines, and artificial intelligence. These applications are widely varied and raise many
issues related to their own domains. Yet, they also share many of the same organiza-
tional concerns, such as communication, modularity, synchronization, control, and the
overhead of dividing up a task into its parallel components. This book concentrates on
a particular type of parallel organization and a particular problem in the area of AI, but
the principles that are elucidated are applicable in the wider setting of computer science.

Since any well-defined algorithm can in principle be implemented as a serial compu-
tation on a Turing machine (Turing’s Thesis), the contribution of parallel architectures
and languages is not one of absolute computational power. Rather, the potential advan-
tages lie in the areas of efficiency, ease of representation, and flexibility. It is therefore
necessary to discover what the advantages or disadvantages are with respect to other
architectures. One weakness with many research projects in this area is that they only
show the possibility for solving certain classes of problems on particular architectures.
Rigorous complexity analysis and consideration of fundamental computational tradeoffs
are rarely provided. These tradeoffs include: space versus time, global versus local com-
munication, centralized control versus local autonomy, and the cost of dividing up a task
into its parallel components and managing the parallel processes versus the specdups
that are obtained.

Since there is no unifying formal framework within which to examine these questions
generally, analysis of results and comparison with other systems are difficult. How-
ever, classifier systems are powerful and flexible enough to support examination of these
tradeoffs in the context of the particular problem, classification in KL-ONE. Chapter 6
presents a detailed analysis of the results of this project, discussing the complexity of
the algorithms and the computational tradeoffs within the formalism.



