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PREFACE

It is now well accepted that chaos is an ubiquitous and robust nonlinear phe-
nomenon frequently encountered in nature. During the past two decades or so
the concept of chaos has permeated almost all branches of science and engi-
neering. The field is growing into a stage where the initial surprises associated
with the phenomenon are waning and new understandings are appearing, while
actual controlling and harnessing of it are being contemplated. In these devel-
opments, the study of nonlinear oscillators has played a very important role
in understanding the chaotic phenomenon. Many ubiquitous systems such as
the Duffing oscillator, damped and driven pendulum, driven van der Pol os-
cillator, and so on have been treated as paradigms in chaos research. The
study of such systems is based mostly on approximate analytic approaches
and detailed numerical investigations. From another point of view, nonlinear
electronic circuits complement these studies through analog simulations. Be-
sides, many new nonlinear electronic circuits have been constructed, which are
dynamical systems of interest on their own accord. Chua’s diode and related
circuits are foremost examples of nonlinear electronic circuits which act as ver-
itable black boxes to study nonlinear phenomena. Thus the twin approaches of
numerical analysis and circuit theoretic studies can complement each other in
the investigation of bifurcation and chaos phenomena in nonlinear dynamical
systems.

In recent times, one has witnessed considerable activity in the controlling of
chaotic motions to desired regular orbits, through predetermined small pertur-
bations. Various algorithms have been proposed and implemented successfully
to avoid the harmful effects of chaos, when required, and bring back the sys-
tem to desired regular states by minimal changes. But more surprisingly chaos
can also be harnessed in a purposeful way leading to exciting technological
applications. Against common beliefs, identical chaotic systems can be syn-
chronized provided an appropriate coupling is introduced between them. This



vi Preface

in turn leads to the possibility of spread-spectrum secure communications of
both analog and digital signals.

The aim of this book is essentially to analyse the bifurcation and chaos
phenomena in typical nonlinear oscillators, especially of damped and driven
types, from both dynamical and circuit theoretical points of view, and then
to introduce the concept of controlling and synchronization in them. Though
many important books on chaotic dynamics have appeared in the recent litera-
ture stressing different aspects, the authors believe that the approach taken in
this book and the topics covered deal with many aspects not readily discussed
in other books on chaos.

Specifically, after giving a brief introduction to the topic of nonlinear dy-
namics in Chapter 1, we introduce the elementary notions on the dynamics
of linear and nonlinear oscillators in Chapter 2. In Chapter 3, a brief intro-
duction to linear and nonlinear circuit theory is provided and the relation to
dynamical systems is explained. Bifurcation and chaos phenomena with spe-
cific reference to the Duffing oscillator are discussed in Chapters 4 and 5. The
different types of attractors, bifurcations, and routes to chaos are discussed
in detail for the double-well, single-well and double-hump Duffing oscillators
by both numerical analysis and analog circuit simulation in Chapter 4. Com-
plementing these studies, an analytic investigation of the Duffing oscillator is
carried out in Chapter 5 through approximate (perturbation and linear stabil-
ity) analyses, Melnikov criterion and analytic structure (Painlevé singularity
structure) studies.

Chapter 6 deals with the bifurcation and chaos aspects of the Bonhoeffer—
van der Pol (BVP) and Duffing—van der Pol oscillators, involving numerical,
analytical and analog simulation studies. Chapter 7 is devoted to a study
of bifurcation and chaos phenomena in nonlinear electronic circuits involving
piecewise-linear Chua’s diode by both experimental and numerical analyses.
We consider the behaviour of Chua’s oscillator, the autonomous Chua’s circuit,
the driven Chua’s circuit, the simplest dissipative nonautonomous circuit, and
the autonomous Duffing-van der Pol oscillator here.

The final part of the book, consisting of Chapters 8 and 9, deals with some
very recent developments in chaotic dynamics, namely controlling of chaos
and synchronization of chaotic systems. In Chapter 8 we give a brief account
of the various algorithms suggested for controlling of chaos and apply these
algorithms to the BVP oscillator as a test case. Some of the methods are also
applied to the other oscillators mentioned above. Finally, in Chapter 9 we
introduce the Pecora and Carroll method of chaos synchronization with and
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without cascading, as well as the alternative method of one-way coupling of
identical chaotic systems. We then illustrate the possibility of transmitting
analog and digital signals using synchronized chaotic signals as carriers in a
secure way and apply it to the various oscillators discussed.

The book also contains three appendices on (i) perturbation methods, (ii)
van der Pol oscillator, and (iii) some other standard oscillators. Also, a glossary
of specialized terms is included.

In the absence of exact analytical methods, numerical studies alone cannot
provide a complete picture of the dynamics in the parameter space. For most
of the oscillators considered in this book, such phase diagrams given in the
text cover only a portion of the parameter space. More extensive analysis is
required to cover the entire space of the parameters. However, we do hope
that the present book may motivate further work along this direction.

In our endeavour to write this book, we have received whole-hearted sup-
port from the members of the Nonlinear Dynamics Group at Bharathidasan
University. We have freely used their research results in our discussions in the
book. In addition, Dr. M. Daniel and Dr. S. Rajasekar helped us by providing
critical comments on the manuscript. We thank them and other members of
the group for their cooperation.

In the main body of the book, we have also used materials and figures
from many published articles by different authors, which are referred to at
appropriate places in the text. We thank the American Institute of Physics
and Institute of Physics, U.K., for granting permission to reproduce some of
the figures appeared in their journals. For a book of this nature, it is impossible
to refer to all the related published literature. Though we have tried to give
the relevant references which are familiar to us, we apologize to those authors
whose work we did not mention due to either our ignorance or unfamiliarity.

Finally, we wish to record our acknowledgement of the continued support
received from Bharathidasan University and the Department of Science and
Technology, Government of India, for many years for our various activities in
nonlinear dynamics. This support is the main inspiration for us to undertake
the endeavour of writing this book.

April 1995 M. Lakshmanan
Tiruchirapalli K. Murali
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CHAPTER 1

INTRODUCTION

1.1. General

Evolution of physical systems, subject to suitable (constraint-free) internal and
external forces and appropriate initial conditions, is often expected to be com-
pletely and uniquely determined by Newton’s equations of motion (Ref. [1]).
For an N-particle system with masses m; (i = 1,2,...,N) and forces F; act-
ing on them, the dynamics is in general described by the set of second order
ordinary differential equations

dzri dl‘l dr2 d!‘n
it = By [ BB o e By s e s s e | 5 = BByt [l
Rp72 ( T X2 T Tt T dt ’ B (L)

Here r; is the position vector of the ith particle in an inertial frame of reference
and Eq. (1.1) is subjected to the prescribed 6V initial conditions r;(0), 25t ;.
It is implicitly assumed here that the initial position and velocity vectors of
each particle can be accurately and simultaneously provided. By solving the
system of 3/N-second order coupled ordinary differential equations (1.1) along
with the initial conditions, one can expect that the future of the system can be
completely predicted with any required precision. Such a possibility, in fact,
led Laplace to imagine that for a super-intelligence ‘nothing could be uncertain
and the future, as the past, would be present to its eyes’ (Ref. [2]).

1.2. Nonlinearity and Chaotic Motions

In spite of the impressive conceptual foundation, there are obvious limitations
in Newton’s description and so in Laplace’s dictum:

1



2 Chaos in Nonlinear Oscillators

(i) Presence of external random forces/fluctuations can always introduce
a kind of indeterminacy, which is a statistical phenomenon.

(ii) Quantum effects can often lead to indeterminacy, dictated by the Heisen-
berg’s uncertainty relations, due to our limitations in the simultane-
ous physical measurement of canonically conjugate dynamical variables
such as position and momentum.

During recent times, it has been realized that a third kind of limitation can
occur in Newton’s description of evolution of even simple dynamical systems
when nonlinearity is present (Refs. [2-10]) in a suitable form. It is true that in
order to predict the future behaviour of a physical system accurately, leaving
aside the limitations posed by statistical and quantum effects, one has only to
solve the initial value problem of a system of deterministic differential equations
of the form (1.1).

However, when nonlinear forces are present, the system can in general admit
very complex motions and the associated equation of motion cannot in general
be exactly integrated. As a result often one has to take recourse to numerical
integration of the underlying differential equations. Then any small inaccuracy
in the prescription of the initial state or round-off errors at any point or stage of
the numerical calculation can build up exponentially fast to make the system
deviate appreciably from the actual intended state in a finite time interval.
One says that there is an ezponential divergence of nearby trajectories. There
is nothing much we can do about this indeterminism, because however accurate
and fast calculating machines we are able to produce, there can still be some
small error at some stage of the calculation which will multiply fast in a finite
amount of time. This is a fact which we have to live with when nonlinearity is
present in an appropriate form.

One might wonder whether the above effect is a mere mathematical or
computational artifact or whether it has anything to do with the physical
behaviour of the system at all. In fact, one knows now very well that an
immediate physical realization of the above exponential divergence of nearby
trajectories is the extreme sensitiveness of the behaviour of the system on
initial conditions. This fact was after all anticipated by H. Poincaré in his
celebrated analysis of celestial mechanics (Ref. [2]) itself. Any infinitesimal
fluctuation at any time during the evolution of a system can in a finite time
lead to a physically realizable effect, the so called ‘butterfly effect’ as termed
by Lorenz (Refs. [2, 4]): “As small a perturbation as a butterfly fluttering its
wings somewhere in the Amazons can in a few days time grow into a tornado
in Texas”.
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The above type of complex behaviour admitted by appropriate nonlinear
systems, exhibiting extreme sensitiveness to initial conditions, is termed as
chaotic motion or simply chaos, which is a pure manifestation of nonlinearity.
Of all possible nonlinear systems, especially of importance are dissipative and
conservative systems. There are characteristic differences between the chaos
exhibited by these two categories.

1.3. Dissipative and Conservative Nonlinear Systems

(i) Dissipative systems: The time evolution of these systems contracts volume
in the phase-space (the abstract space of state variables) and consequently the
trajectories approach asymptotically either a chaotic or a non-chaotic attrac-
tor. The latter may be a fixed point, a periodic limit cycle or a quasiperiodic
attractor. These and the chaotic attractors are bounded regions of phase-space
towards which the trajectory of the system, represented as a curve, converges
in the course of long-time evolution (Refs. [5-10])). Bifurcation or qualita-
tive changes of periodic attractors can occur leading to more complicated and
chaotic structures, as a control parameter is varied.

The chaotic attractor is, typically, neither a point nor a curve but a geo-
metrical structure having a self-similar and fractal (often multifractal) nature.
Such chaotic attractors are called strange attractors. Many physically and bio-
logically important nonlinear dissipative systems, both in low and high dimen-
sions, exhibit strange attractors and chaotic motions. Typical examples are the
various damped and driven nonlinear oscillators (Refs. [5-16]), the Lorenz sys-
tem (Ref. [4]), the Brusselator model (Refs. [13, 14]), the Bonhoeffer—van der
Pol oscillator (Ref. [17]), the piecewise linear electronic circuits (Refs. [18-20]),
and so on.

(ii) Conservative or Hamiltonian systems: Nonlinear systems of conser-
vative or Hamiltonian type also often exhibit chaotic motions (Refs. [21-23]).
But here the phase-space volume is conserved and so no strange attractor is
exhibited. Instead, chaotic orbits tend to visit all parts of a subspace of the
phase-space uniformly. The dynamics of a nonintegrable conservative system
is typically neither entirely regular nor entirely irregular, but the phase-space
consists of a complicated mixture of regular and irregular components. In
the regular region the motion is quasiperiodic and the orbits lie on tori while
in the irregular regions the motion appears to be chaotic but they are not
attractive in nature. Typical examples include coupled nonlinear oscillators,
the Henon—Heiles system, the anisotropic Kepler problem, and so on. Simi-
larly, the quantum manifestations of such Hamiltonian chaos, namely quantum
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chaos (Refs. [21-24]), are also of great physical relevance. However, this book
does not deal with the Hamiltonian chaos aspects but concentrates only on
dissipative systems.

It should be emphasized here that not every nonlinear dynamical system
as a rule exhibits chaotic motions. Even very complicated nonlinear systems
can sometimes exhibit very coherent and ordered structures such as solitons,
dromions, instantons, and so on (Refs. [25, 26]). When a given nonlinear dy-
namical system will exhibit chaotic behaviour and when it will admit coherent
and ordered behaviour are intricate mathematical problems, the understanding
of which will constitute an important area of future investigations in the field.
Some possible lines of thinking include the Painlevé singularity structure anal-
ysis (Refs. [27, 28]), investigation of generalized symmetries (Refs. [28-31]),
Melnikov analysis (Refs. [10, 32]) and so on.

1.4. Bifurcations and Chaos-Controlling and Synchronization

In this book we will concentrate mainly on the chaotic motions exhibited by
damped and driven nonlinear oscillator systems of interest in different fields
of research and will illustrate the rich variety of bifurcations and chaos phe-
nomenon exhibited by them. We will then also discuss how chaos can be
controlled to regular motion by minimal efforts and finally the possible tech-
nological applications of it in secure communications through the concept of
chaos synchronization. As a prelude to these developments we will first consider
the oscillations of simple linear and nonlinear systems in the next Chapter.



CHAPTER 2

LINEAR AND NONLINEAR OSCILLATORS

The superposition principle which is valid for linear differential equations is no
longer valid for nonlinear ones. A physical consequence is that the frequency
of oscillation is in general amplitude-dependent in the case of nonlinear Sys-
tems, while it is not so in the case of linear systems. Particularly, this can
have dramatic consequences in the case of forced and damped nonlinear oscil-
lators, leading to nonlinear resonance and jump (hysteresis) phenomenon for
low strengths of nonlinearity parameters. Such behaviours can be analyzed us-
ing various perturbation methods. However, as the control parameter varies,
the nonlinear systems can enter into more complex motions through different
routes, where detailed numerical analysis and possible analog simulations us-
ing electronic circuits can be of much help. We will briefly introduce these
ideas in the present and next Chapters, while more exhaustive studies will
be taken up in the later Chapters. Before discussing the nature of nonlinear
oscillations, we will first briefly discuss the salient features associated with a
damped and driven linear oscillator in order to compare its properties with
nonlinear oscillators.

2.1. Linear Oscillators and Predictability

Physical systems whose motion is described by linear differential equations are
called linear systems. If they are associated with oscillatory behaviour, then
they are designated as linear oscillators (Ref. [33]). The characteristic features
of such linear systems are their insensitiveness to infinitesimal changes in initial
conditions and the (at the most) constant separation of nearby trajectories in
phase space. As a consequence the future behaviour becomes completely pre-



