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Preface

Over the last few years, there has been a significant increase in the number of
students studying partial differential equations at the undergraduate level, and
many of these students have come from areas other than mathematics, where
intuition rather than mathematical rigor is emphasized. In writing Partial Dif-
ferential Equations for Scientists and Engineers, I have tried to stimulate intuitive
thinking, while, at the same time, not losing too much mathematical accuracy.
At one extreme, it is possible to approach the subject on a high mathematical
epsilon-delta level, which generally results in many undergraduate students not
knowing what’s going on. At the other extreme, it is possible to wave away all
the subtleties until neither the student nor the teacher knows what’s going on.
I have tried to steer the mathematical thinking somewhere between these two
extremes.

Partial Differential Equations for Scientists and Engineers evolved from a set
of lecture notes I have been preparing for the last five years. It is an uncon-
ventional text in one regard: It is organized in 47 semi-independent lessons in
contrast to the more usual chapter-by-chapter approach.

Separation of variables and integral transforms are the two most important
analytic tools discussed. Several nonstandard topics, such as Monte Carlo meth-
ods, calculus of variations, control theory, potential theory, and integral equa-
tions, are also discussed because most students will eventually come across these
subjects at some time in their studies. Unless they study these topics here, they
will probably never study them formally.

This book can be used for a one- or two-semester course at the junior or
senior level. It assumes only a knowledge of differential and integral calculus
and ordinary differential equations. Most lessons take either one or two days,
so that a typical one-semester syllabus would be: Lessons 1-13, 15-17, 19-20,
22-23,25-27,30-32,37-39. All 47 lessons can easily be covered in two semesters,
with plenty of time to work problems.

The author wishes to thank the editors at Wiley for their invitation to write
this book as well as the reviewers, Professor Chris Rorres and Professor M.
Kursheed Ali, who helped me greatly with their suggestions. Any further sug-
gestions for improvement of this book, either from students or teachers, would
be greatly appreciated. Thanks also to Dorothy, Susan, Alexander, and Daisy
Farlow.

Stanley J. Farlow
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Laplacian in Different Coordinate Systems

Viu = u, + u, Two dimensional cartesian Laplacian

Vi = u, + 1 u, + 1 ugy ~ Two dimensional polar Laplacian

r r?

Vi = u, + Wit 1y Three dimensional cartesian Laplacian

Vi = u, + 1 u, + %uee & s Three dimensional cylindrical Laplacian
i
Viu = u, + 2 u, + 1 Ugy + g uy + 2; Upy = 0 Three dimensional
r r r r*sin 6 spherical Laplacian
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Elliptic Partial Differential Equations

=0 Laplace’s equation

Nu =0 Helmbholtz’s equation
k Poisson’s equation

KE — V)u =0 Schrodinger’s equation

Hyperbolic Partial Differential Equations

Clly; One dimensional vibrating string

ug, — hu, Vibrating string with friction

g — hu, — ku Transmission line equation

cu, + fix,1) Wave equation with forced vibrations
2V Wave equation in higher dimensions

¢2V?u — hu,  Wave equation with friction

Parabolic Partial Differential Equations

o Uy, One-dimensional diffusion equation
o?u, — hu, Diffusion-convection equation
ou,, — ku Diffusion with lateral heat-concentration loss

Cu,, + fix,0) Diffusion with heat source (or loss)



Exponential Fourier Transform
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Laplace Transforms
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LessoN 1

Intfroduction to Partial Differential
Equations

PURPOSE OF LESSON: To show what partial differential equations
are, why they are useful, and how they are solved; also included is a brief
discussion on how they are classified as various kinds and types. An over-
view is given of many of the ideas that will be studied in detail later.

Most physical phenomena, whether in the domain of fluid dynamics, electricity,
magnetism, mechanics, optics, or heat flow, can be described in general by
partial differential equations (PDEs); in fact, most of mathematical physics are
PDEs. It’s true that simplifications can be made that reduce the equations in
question to ordinary differential equations, but, nevertheless, the complete
description of these systems resides in the general area of PDEs.

What Are PDEs?

A partial differential equation is an equation that contains partial derivatives.
In contrast to ordinary differential equations (ODEs), where the unknown func-
tion depends only on one variable, in PDEs, the unknown function depends on
several variables (like temperature u(x,t) depends both on location x and
time 7).

Let’s list some well-known PDEs; note that for notational simplicity we have
called

_w u

u\'_ xx
Coot : ax = ax?

A Few Well-Known PDEs

U, = Uy, (heat equation in one dimension)
u =u, +u, (heat equation in two dimensions)

1 1 : " :
u, + U + 2 Yoo = 0 (Laplace’s equation in polar coordinates)

Introduction to Partial Differential Equations 3



Wy = U + W, + Wy (wave equation in three dimensions)
u, = u,, + au, + Bu (telegraph equation)

Note on the Examples

The unknown function u always depends on more than one variable. The variable
u (which we differentiate) is called the dependent variable, whereas the ones we
differentiate with respect to are called the independent variables. For example,
it is clear from the equation

ul = uXX

that the dependent variable u(x,t) is a function of two independent variables x
and ¢, whereas in the equation

ul = urr + ;ur =t ﬁuae

u(r,6,t) depends on r, 6, and .

Why Are PDEs Useful?

Most of the natural laws of physics, such as Maxwell’s equations, Newton’s law
of cooling, the Navier-Stokes equations, Newton’s equations of motion, and
Schrodinger’s equation of quantum mechanics, are stated (or can be) in terms
of PDEs, that is, these laws describe physical phenomena by relating space and
time derivatives. Derivatives occur in these equations because the derivatives
represent natural things (like velocity, acceleration, force, friction, flux, current).
Hence, we have equations relating partial derivatives of some unknown quantity
that we would like to find.

The purpose of this book is to show the reader two things

1. How to formulate the PDE from the physical problem (constructing the

mathematical model).

2. How to solve the PDE (along with initial and boundary conditions).
We wait a few lessons before we start the modeling problem; now, a brief
overview on how PDEs are solved.

How Do You Solve a Partial Differential Equation?

This is a good question. It turns out that there is an entire arsenal of methods
available to the practitioner; the most important methods are those that change
PDEs into ODEs. Ten useful techniques are

4 Introduction



