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Preface

Integrated circuits are the enabling technology for the modern information
age. Advanced systems are built using state-of-the-art semiconductor chips.
Computing, communication, and network chips fuel the information tech-
nology era. The demands of emerging software applications can be met only
with unique chips and systems. The integration ability presented by mod-
ern semiconductor technology presents opportunities; however, the require-
ments posed by power consumption, reliability, and form factor present
challenges. This book presents fourteen chapters dealing with several sys-
tems and chips that present unique approaches to designing future comput-
ing and communication chips and systems.

Chapter 1 presents the TRIPS processor architecture and microarchitec-
ture. TRIPS is a unique architecture that seeks to better exploit uniprocessor-
level concurrency by changing the way instruction-level concurrency is
expressed to the hardware, thereby extending the scaling of uniprocessors
and enabling more efficient multiprocessors. TRIPS uses an explicit data
graph execution (EDGE) instruction set architecture to efficiently encode
concurrency in its dataflow execution model. The TRIPS microarchitecture
uses a distributed, tiled microarchitecture that supports dynamic out-of-
order execution. It is partitioned for scalability and implements deep specu-
lation and latency tolerance.

Chapter 2 describes the Centaur Technology x86 processor with several
data security features. Centaur Technology (a part of VIA Technologies
Inc.) integrated several security features into the x86 processor, with little
increase in die size or development effort. The chapter presents the hardware
security features, and describes the implementation of the AES encryption
hardware, the secure hash algorithm (SHA) hardware and the Montgomery
multiplier—all aimed at improving the security of the processor.

Chapter 3 presents the ARM Cortex-A8 processor, a sub-1 watt processor
that provides high performance for general purpose and media applica-
tions. The processor performs superscalar execution; yet, it is designed to be
energy efficient. The microarchitecture, machine efficiency, and operating
frequency are decided with energy efficiency as a primary criterion. Multi-
media and graphics applications are supported with a 64-bit SIMD unit.

Chapter 4 presents a highly parallel signal processor, the RACE-Hyper-
cube processor, which achieves up to 1 trillion bytes/sec at a relatively low
clock frequency of 250 MHz. The processor allows the selection of a variety
of configuration parameters.

vii
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Chapter 5 presents an asynchronous FPGA design—the RASTER architec-
ture. The challenges and limitation of a clocked design are overcome with a
self-timed (asynchronous) design, resulting in higher performance per watt.
The RASTER architecture consists of an FPGA logic cell that uses a unique
method of intercell communication. Simulation shows data throughput rates
of up to 1.3 GHz at the 90nm process on a benchmarking suite of small FPGA
designs.

Chapter 6 presents another unique chip—the continuation-based Fuce
multithreading processor. The Fuce processor from Kyushu University, Japan,
is based on the dataflow computing model. The Fuce processor pursues par-
allel execution of threads with high parallel processing and compatibility.
Fuce means “fusion of communication and execution.” The Fuce processor
executes multiple threads using the exclusive multithread execution model,
which is derived from dataflow computing. The Fuce processor aims to fuse
the interprocessor execution and interprocessor communication. The Fuce
processor unifies processing inside the processor and communication with
external processors using events and threads.

Chapter 7 is a study of a processor with dual thread execution modes. The
authors present the use of additional cores on a processor for two purposes:
(1) to execute subordinate threads, and (2) to execute speculative threads.
Threads are spawned to the available processing cores to exploit thread-
level parallelism. Performance analysis using SPEC CPU2000 benchmarks
show higher improvement using subordinate threads rather than specula-
tive threads. A processor that can switch execution modes between the two
approaches is also investigated since many applications alternate between
different types of phases during their execution. Such an adaptive processor
is seen to be 17 percent better than the subordinate thread mechanism alone.

Adaptive power management of computer systems has become extremely
important in recent years. Such techniques heavily rely on variation of
power during execution of applications. Chapter 8 presents power phases in
commercial and scientific workloads running on enterprise-class hardware.
Power consumption of CPU, 1I/O, and disk subsystems is measured using
power sensors and phase behavior of applications is studied.

Future chips are driven by emerging and future applications. A workload
that is most demanding of computational power and speed is computer
graphics and visualization. Gaming has driven this quest for function and
speed to such a point that graphics chips, independent of the driving com-
puter system, have more gates than the latest CPU and many times the arith-
metic power. And yet, there are aspects of graphics that still overly consume
the power of systems. In Chapter 9, example graphics applications that need
enormous computing power are presented. The author seeks to provide com-
pact geometric representations of shapes so that rendering (displaying on
the screen) can be more efficiently performed. He shows a close relation-
ship between quadratic Bezier curves (QBCs) and iterated function systems
(IFSs) to manipulate 2D sets that resemble 3D sets in the real world. He also
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demonstrates the value of segmenting 3D triangle meshes that represent
human teeth, thus dramatically accelerating visualization processes.

In Chapter 10, the authors illustrate the use of hardware accelerators built
from field programmable gate arrays (FPGAs), graphic processing units
(GPUs), or SIMD processor arrays for high performance computing. Such
a system can be considered as a two-level processing system, consisting of
the conventional processing nodes and the acceleration hardware connected
over a high-speed network. In this chapter, researchers from the Los Alamos
National Laboratory describe the use of such systems for a class of applica-
tions that use wavefront algorithms. These algorithms are characterized by
a specific order in which cells are processed. The improvement in perfor-
mance from accelerators such as the Clearspeed CSX600 SIMD accelerator is
presented.

In Chapter 11, characteristics of a bioinformatics application are presented.
Computational biology has become an important workload for high perfor-
mance computers. Multiple-sequence alignment applications are important
bioinformatics applications. Twelve multiple sequence alignment programs
with a variety of alignment approaches are analyzed for performance of the
cache, trace cache, branch predictor, phase behavior, and so on.

Embedded systems are inherently real time systems—they must control
and compute as demanded by events. And the larger systems they are part of
may demand a significant number of parallel processes going; for example,
the most lavishly outfitted BMW automobile has an excess of 100 microcon-
trollers in charge of its many operations. Ravenscar is a subset of the Ada
programming language designed for real-time computing. In Chapter 12, the
authors present a Ravenscar, hardware-implemented run-time kernel with
delay queues that allows for accurate analysis of application timing behavior.
Formal state models and their simulations as well as hardware implemen-
tation are presented. The authors describe the corresponding VHDL state
machines and demonstrate that the required levels of parallelism, hardware
requirements, and timing granularity can be achieved.

In Chapter 13, an error correction scheme for a network-on-chip (NOC)
is presented. The increased susceptibility of on-chip networks to various
sources of error necessitates strategies to handle errors. A forward error cor-
rection scheme employing a low density parity check code (LDPC) is pre-
sented in this chapter. The presented LDPC is a linear block code suitable
for low latency, high gain, and low power design because of its streamlined
forward-only data flow structure.

Chapter 14 presents silicon-based on-chip optical interconnects and their
use in reducing thermal constraints in a high performance clustered multi-
threaded processor. Increased integration in modern semiconductor technol-
ogies often results in regions of the chip with very high power densities or hot
spots. One technique to reduce the thermal concerns from the hot spots is to
intermix hot and cold units, however, at the cost of increasing communication
distances between blocks. Silicon-based optical interconnects are shown to
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be very valuable for global communication paths in such chips. A significant
reduction in thermal constraints without reducing performance is shown in
connecting the common front-end with the distributed back-end of a clus-
tered multithreaded processor.

We hope that the readers of this book enjoy the variety of unique systems
and chips presented. Most of the chapters in this book are revised versions of
selected papers presented at the first, second, and third Workshop on Unique
Chips and Systems (UCAS). The first and second UCAS workshops were held
in March 2005 and March 2006 in Austin, Texas, and the third UCAS work-
shop was held in San Jose, California, in April 2007. We would like to thank
the authors of the chapters for their contributions. We also wish to thank all
those who helped in the process, especially Nora Konopka and Jessica Vakili
at CRC Press/Francis & Taylor.

Eugene John
University of Texas at San Antonio

Juan Rubio
IBM Austin Research Laboratory
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1.1 Introduction

Growing on-chip wire delays, coupled with complexity and power limita-
tions, have placed severe constraints on the issue-width scaling of central-
ized superscalar architectures. As a result, recent microprocessor designs
have backed away from powerful uniprocessors, instead favoring multiple
simpler cores on a single die. Partitioning the chip into a collection of proces-
sors communicating via a common memory system mitigates some of the
technology scaling challenges, but increases the burden on software to pro-
vide multiple threads to execute concurrently across the cores.

An alternative is to pursue more powerful uniprocessors, but design them
so that they are scalable and tolerant of technology and complexity scaling.
Ideally, such wide-issue processors would be tiled [30], meaning composed
of multiple replicated, communicating design blocks. Because of multicycle
communication delays across these large processors, control must be distrib-
uted across the tiles. We advocate the use of microarchitectural networks
(or micronets) for routing control and data among the tiles. Micronets pro-
vide high-bandwidth, flow-controlled transport for control or data in a wire-
dominated processor by connecting the multiple tiles, each of which is a
client on one or more micronets. Higher-level microarchitectural protocols
direct global control across the micronets and tiles in a manner invisible to
software.



