Leopoldo Bertossi
Anthony Hunter
Torsten Schaub (Eds.)

e
S
n
. Q)
o o
T
G
&
(<P}
ot
(go]
]
w

Survey

Inconsistency
Tolerance

Springer

-
- - [
<
N

H

Leopoldo Bertossi Anthony Hunter
Torsten Schaub (Eds.)

Inconsistency
Tolerance

——
> R,
N

' 4 .
L7 L b Y
! Py ¥\

1

- iz |

\=r R
)\L t&. 1, ¥ '!f W
N Y R ’,f

S __,/

IIMINIIIIIHIWIIIHIIIII

E200500852

@ Springer

Volume Editors

Leopoldo Bertossi

Carleton University, School of Computer Science

Herzberg Building, 1125 Colonel By Drive, Ottawa, Canada K1S 5B6
E-mail: bertossi@scs.carleton.ca

Anthony Hunter

University College London, Department of Computer Science
Gower Street, London WCI1E 6BT, UK

E-mail: a.hunter@cs.ucl.ac.uk

Torsten Schaub
Universitit Potsdam, Institut fiir Informatik

August-Bebel-Str. 89,14482 Potsdam, Germany
E-mail: torsten @cs.uni-potsdam.de

Library of Congress Control Number: 2004117075

CR Subject Classification (1998): H.2, D.2, F3, F4

ISSN 0302-9743
ISBN 3-540-24260-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.
Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper SPIN: 11373957 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan :

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3300

Preface

The idea for this book arose after we had organized a meeting on inconsistency
tolerance at Dagstuhl in Germany in the summer of 2003. We approached a number
of eminent researchers in the field to contribute to the first book devoted to the
subject. The net result is a collection of papers that provide an exciting coverage of
some of the key aspects of the field.

All the chapters in the collection were anonymously reviewed, chapters by editors
of the book being submitted for anonymous review by the other editors. Reviewing
was undertaken by other authors involved in the project and by external reviewers.
We are particularly grateful to the external reviewers as we believe they made a very
significant contribution to all the chapters. The external reviewers included Ofer
Arieli, Pablo Barcelo, Diego Calvanese, Sergio Greco, Jerome Lang, Domenico
Lembo, Peter McBrien, Nic Wilson, and Peter Wood.

October 2004 Leo Bertossi
Anthony Hunter
Torsten Schaub

Lecture Notes in Computer Science

For information about Vols. 1-3253

please contact your bookseller or Springer

Vol. 3382: J. Odell, P. Giorgini, J.P. Miiller (Eds.), Agent-
Oriented Software Engineering V. X, 239 pages. 2004.

Vol. 3363: T. Eiter, L. Libkin (Eds.), Database Theory -
ICDT 2005. XI, 413 pages. 2004.

Vol. 3358: J. Cao, L.T. Yang, M. Guo, F. Lau (Eds.), Par-
allel and Distributed Processing and Applications. XXIV,
1058 pages. 2004.

Vol. 3356: G. Das, V.P. Gulati (Eds.), Intelligent Informa-
tion Technology. XII, 428 pages. 2004.

Vol. 3353: J. Hromkovi&, M. Nagl, B. Westfechtel (Eds.),
Graph-Theoretic Concepts in Computer Science. XI, 404
pages. 2004.

Vol. 3348: A. Canteaut, K. Viswanathan (Eds.), Progress in
Cryptology - INDOCRYPT 2004. XIV, 431 pages. 2004.

Vol. 3347: R.K. Ghosh, H. Mohanty (Eds.), Distributed
Computing and Internet Technology. XX, 472 pages.
2004.

Vol. 3341: R. Fleischer, G. Trippen (Eds.), Algorithms and
Computation. XVII, 935 pages. 2004.

Vol. 3340: C.S. Calude, E. Calude, M.J. Dinneen (Eds.),
Developments in Language Theory. XI, 431 pages. 2004.

Vol. 3339: G.I. Webb, X. Yu (Eds.), AI 2004: Advances in
Artificial Intelligence. XXI1I, 1272 pages. 2004. (Subseries
LNAI).

Vol. 3338: S.Z. Li, J. Lai, T. Tan, G. Feng, Y. Wang (Eds.),
Advances in Biometric Person Authentication. XVIII, 699
pages. 2004.

Vol. 3337: .M. Barreiro, F. Martin-Sanchez, V. Maojo, F.
Sanz (Eds.), Biological and Medical Data Analysis. XI,
508 pages. 2004.

Vol. 3336: D. Karagiannis, U. Reimer (Eds.), Practical
Aspects of Knowledge Management. X, 523 pages. 2004.
(Subseries LNAI).

Vol. 3334: Z. Chen, H. Chen, Q. Miao, Y. Fu, E. Fox, E.-p.
Lim (Eds.), Digital Libraries: International Coilaboration
and Cross-Fertilization. XX, 690 pages. 2004.

Vol. 3333: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part ITI. XXXV, 785 pages. 2004.

Vol. 3332: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part II. XXXVI, 1051 pages. 2004.

Vol. 3331: K. Aizawa, Y. Nakamura, S. Satoh (Eds.),
Advances in Multimedia Information Processing - PCM
2004, Part I. XXX VI, 667 pages. 2004.

Vol. 3329: P.J. Lee (Ed.), Advances in Cryptology - ASI-
ACRYPT 2004. XVI, 546 pages. 2004.

Vol. 3328: K. Lodaya, M. Mahajan (Eds.), FSTTCS 2004:
Foundations of Software Technology and Theoretical
Computer Science. X VI, 532 pages. 2004.

Vol. 3326: A. Sen, N. Das, S.K. Das, B.P. Sinha (Eds.),
Distributed Computing - IWDC 2004. XIX, 546 pages.
2004.

Vol. 3323: G. Antoniou, H. Boley (Eds.), Rules and Rule
Markup Languages for the Semantic Web. X, 215 pages.
2004.

Vol. 3322: R. Klette, J. Zuni¢ (Eds.), Combinatorial Image
Analysis. XII, 760 pages. 2004.

Vol. 3321: M.J. Maher (Ed.), Advances in Computer Sci-
ence - ASIAN 2004. XTI, 510 pages. 2004.

Vol. 3320: K.-M. Liew, H. Shen, S. See, W. Cai (Eds.), Par-
allel and Distributed Computing: Applications and Tech-
nologies. XXIV, 891 pages. 2004.

Vol. 3316: N.R. Pal, N.K. Kasabov, R.K. Mudi, S. Pal,
S.K. Parui (Eds.), Neural Information Processing. XXX,
1368 pages. 2004.

Vol. 3315: C. Lemaitre, C.A. Reyes, J.A. Gonzélez (Eds.),
Advances in Artificial Intelligence — IBERAMIA 2004.
XX, 987 pages. 2004. (Subseries LNAI).

Vol. 3314: J. Zhang, J.-H. He, Y. Fu (Eds.), Computational
and Information Science. XXIV, 1259 pages. 2004.

Vol. 3312: A.J. Hu, A.K. Martin (Eds.), Formal Methods
in Computer-Aided Design. XI, 445 pages. 2004.

Vol. 3311: V. Roca, F. Rousseau (Eds.), Interactive Mul-
timedia and Next Generation Networks. XIII, 287 pages.
2004.

Vol. 3309: C.-H. Chi, K.-Y. Lam (Eds.), Content Comput-
ing. XII, 510 pages. 2004.

Vol. 3308: J. Davies, W. Schulte, M. Barnett (Eds.), For-
mal Methods and Software Engineering. XIII, 500 pages.
2004.

Vol. 3307: C. Bussler, S.-k. Hong, W. Jun, R. Kaschek,
D.. Kinshuk, S. Krishnaswamy, S.W. Loke, D. Oberle, D.
Richards, A. Sharma, Y. Sure, B. Thalheim (Eds.), Web
Information Systems — WISE 2004 Workshops. XV, 277
pages. 2004.

Vol. 3306: X. Zhou, S. Su, M.P. Papazoglou, M.E. Or-
lowska, K.G. Jeffery (Eds.), Web Information Systems —
WISE 2004. XVII, 745 pages. 2004.

Vol. 3305: PM.A. Sloot, B. Chopard, A.G. Hoekstra
(Eds.), Cellular Automata. XV, 883 pages. 2004.

Vol. 3303: J.A. Lépez, E. Benfenati, W. Dubitzky (Eds.),

Knowledge Exploration in Life Science Informatics. X,
249 pages. 2004. (Subseries LNAI).

Vol. 3302: W.-N. Chin (Ed.), Programming Languages and
Systems. XIII, 453 pages. 2004.

Vol. 3300: L. Bertossi, A. Hunter, T. Schaub (Eds.), In-
consistency Tolerance. VII, 295 pages. 2004.

Vol. 3299: F. Wang (Ed.), Automated Technology for Ver-
ification and Analysis. XII, 506 pages. 2004.

Vol. 3298: S.A. Mcllraith, D. Plexousakis, F. van Harme-
len (Eds.), The Semantic Web — ISWC 2004. XXI, 841
pages. 2004.

Vol. 3296: L. Bougé, V.K. Prasanna (Eds.), High Perfor-
mance Computing - HiPC 2004. XXV, 530 pages. 2004.

Vol. 3295: P. Markopoulos, B. Eggen, E. Aarts, J.L. Crow-
ley (Eds.), Ambient Intelligence. XIII, 388 pages. 2004.

Vol. 3294: C.N. Dean, R.T. Boute (Eds.), Teaching Formal
Methods. X, 249 pages. 2004.

Vol. 3293: C.-H. Chi, M. van Steen, C. Wills (Eds.), Web
Content Caching and Distribution. IX, 283 pages. 2004.

Vol. 3292: R. Meersman, Z. Tari, A. Corsaro (Eds.), On the
Move to Meaningful Internet Systems 2004: OTM 2004
Workshops. XXIII, 885 pages. 2004.

Vol. 3291: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE, Part II. XXV, 824 pages. 2004.

Vol. 3290: R. Meersman, Z. Tari (Eds.), On the Move to
Meaningful Internet Systems 2004: CooplS, DOA, and
ODBASE, Part I. XXV, 823 pages. 2004.

Vol. 3289: S. Wang, K. Tanaka, S. Zhou, T.W. Ling, J.
Guan, D. Yang, F. Grandi, E. Mangina, L-Y. Song, H.C.
Mayr (Eds.), Conceptual Modeling for Advanced Appli-
cation Domains. XXII, 692 pages. 2004.

Vol. 3288: P. Atzeni, W. Chu, H. Lu, S. Zhou, T.W. Ling
(Eds.), Conceptual Modeling — ER 2004. XXI, 869 pages.
2004.

Vol. 3287: A. Sanfeliu, J.F. Martinez Trinidad, J.A. Car-
rasco Ochoa (Eds.), Progress in Pattern Recognition, Im-
age Analysis and Applications. XVII, 703 pages. 2004.

Vol. 3286: G. Karsai, E. Visser (Eds.), Generative Pro-
gramming and Component Engineering. X1II, 491 pages.
2004.

Vol. 3285: S. Manandhar, J. Austin, U.B. Desai, Y. Oy-

anagi, A. Talukder (Eds.), Applied Computing. XII, 334
pages. 2004.

Vol. 3284: A. Karmouch, L. Korba, ER.M. Madeira
(Eds.), Mobility Aware Technologies and Applications.
XII, 382 pages. 2004.

Vol. 3283: F.A. Aagesen, C. Anutariya, V. Wuwongse
(Eds.), Intelligence in Communication Systems. XIII, 327
pages. 2004.)

Vol. 3282: V. Guruswami, List Decoding of Error-
Correcting Codes. XIX, 350 pages. 2004.

Vol. 3281: T. Dings@yr (Ed.), Software Process Improve-
ment. X, 207 pages. 2004.

Vol. 3280: C. Aykanat, T. Dayar, . Kérpeoglu (Eds.), Com-
puter and Information Sciences - ISCIS 2004. XVIII, 1009
pages. 2004. :

Vol. 3279: G.M. Voelker, S. Shenker (Eds.), Peer-to-Peer
Systems III. XI, 300 pages. 2004.

Vol. 3278: A. Sahai, E. Wu (Eds.), Utility Computing. XI,
272 pages. 2004.

Vol. 3275: P. Perner (Ed.), Advances in Data Mining. VIII,
173 pages. 2004. (Subseries LNAI).

Vol. 3274: R. Guerraoui (Ed.), Distributed Computing.
XIII, 465 pages. 2004.

Vol. 3273: T. Baar, A. Strohmeier, A. Moreira, S.J. Mel-
lor (Eds.), <<UML>> 2004 - The Unified Modelling
Language. XIII, 454 pages. 2004.

Vol. 3272: L. Baresi, S. Dustdar, H. Gall, M. Matera (Eds.),
Ubiquitous Mobile Information and Collaboration Sys-
tems. VIII, 197 pages. 2004.

Vol. 3271: J. Vicente, D. Hutchison (Eds.), Management
of Multimedia Networks and Services. XIII, 335 pages.
2004.

Vol. 3270: M. Jeckle, R. Kowalczyk, P. Braun (Eds.), Grid
Services Engineering and Management. X, 165 pages.
2004.

Vol. 3269: J. Lopez, S. Qing, E. Okamoto (Eds.), Informa-
tion and Communications Security. XI, 564 pages. 2004.

Vol. 3268: W. Lindner, M. Mesiti, C. Tiirker, Y. Tzitzikas,
A. Vakali (Eds.), Current Trends in Database Technology
- EDBT 2004 Workshops. XVIII, 608 pages. 2004.

Vol. 3267: C. Priami, P. Quaglia (Eds.), Global Comput-
ing. VIII, 377 pages. 2004.

Vol. 3266: J. Solé-Pareta, M. Smirnov, P.V. Mieghem, J.
Domingo-Pascual, E. Monteiro, P. Reichl, B. Stiller, R.J.
Gibbens (Eds.), Quality of Service in the Emerging Net-
working Panorama. XVI, 390 pages. 2004.

Vol. 3265: R.E. Frederking, K.B. Taylor (Eds.), Machine
Translation: From Real Users to Research. XI, 392 pages.
2004. (Subseries LNAI).

Vol. 3264: G. Paliouras, Y. Sakakibara (Eds.), Gram-
matical Inference: Algorithms and Applications. XI, 291
pages. 2004. (Subseries LNAI).

Vol. 3263: M. Weske, P. Liggesmeyer (Eds.), Object-
Oriented and Internet-Based Technologies. XII, 239
pages. 2004.

Vol. 3262: M.M. Freire, P. Chemouil, P. Lorenz, A. Gravey
(Eds.), Universal Multiservice Networks. XIII, 556 pages.
2004.

Vol. 3261: T. Yakhno (Ed.), Advances in Information Sys-
tems. XIV, 617 pages. 2004.

Vol. 3260: 1.G.M.M. Niemegeers, S.H. de Groot (Eds.),
Personal Wireless Communications. XIV, 478 pages.
2004.

Vol. 3259: J. Dix, J. Leite (Eds.), Computational Logic in
Multi-Agent Systems. XII, 251 pages. 2004. (Subseries
LNAD.

Vol. 3258: M. Wallace (Ed.), Principles and Practice of
Constraint Programming — CP 2004. XVII, 822 pages.
2004.

Vol. 3257: E. Motta, N.R. Shadbolt, A. Stutt, N. Gibbins
(Eds.), Engineering Knowledge in the Age of the Semantic
Web. XVII, 517 pages. 2004. (Subseries LNAI).

Vol. 3256: H. Ehrig, G. Engels, F. Parisi-Presicce,
G. Rozenberg (Eds.), Graph Transformations. XII, 451
pages. 2004.

Vol. 3255: A. Benczir, J. Demetrovics, G. Gottlob (Eds.),
Advances in Databases and Information Systems. XI, 423
pages. 2004.

Vol. 3254: E. Macii, V. Paliouras, O. Koufopavlou (Eds.),

Integrated Circuit and System Design. XVI, 910 pages.
2004.

Table of Contents

Introduction to Inconsistency Tolerance
Leopoldo Bertossi, Anthony Hunter, Torsten Schaub.............................. 1

Consistency of XML Specifications
Marcelo Arenas, Wenfei Fan, Leonid Libkin....................c..coovveinenn.. 15

Consistent Query Answers in Virtual Data Integration Systems
Leopoldo Bertossi, Loreto Bravo.................cooeveeiiiiiiiiiiiiiiiinnninnia.. 42

Representing Paraconsistent Reasoning via Quanitfied Propositional Logic
Philippe Besnard, Torsten Schaub, Hans Tompits, Stefan Woltran............. 84

On the Computational Complexity of Minimal-Change Integrity Maintenance
in Relational Databases

Jan Chomicki, Jerzy Marcinkowski............ccooouiviiieiiiiiiiiiiiiniiinnnann. 119

On the Computational Complexity of Paraconsistent Inference Relations
Sylvie Coste-Marquis, Pierre Marquis..................c..ccooveiieiiininniinnnnn. 151

Approaches to Measuring Inconsistent Information
Anthony Hunter, Sébastien KONieczny..........cc.couiviininiiniiinniinninnn.. 191

Inconsistency Issues in Spatial Databases
Andrea ROATiQUET.ccoouiuiiiiiiiiiiiiiei ettt 237

Relevant Logic and Paraconsistency
JORRSIGREY s o0 cvin vms sumn s wwwm s swe doms vaars S5 5 56 5 555 8 55008 £ 0 enne ome 270

Author IndeX..... ... e 295

Introduction to Inconsistency Tolerance

Leopoldo Bertossi!, Anthony Hunter?, and Torsten Schaub®*

1 School of Computer Science,
Carleton University,
1125 Colonel By Drive,
Ottawa, K1S 5B6, Canada
bertossi@scs.carleton.ca
2 Department of Computer Science,
University College London
Gower Street, London WC1E 6BT, UK
a.hunter@cs.ucl.ac.uk
3 Institut fur Informatik,
August-Bebel-Strasse 89,
D-14482 Potsdam, Germany
torsten@cs.uni-potsdam.de

Abstract. Inconsistency arises in many areas in advanced computing.
Examples include: Merging information from heterogeneous sources; Ne-
gotiation in multi-agent systems; Understanding natural language dia-
logues; and Commonsense reasoning in robotics. Often inconsistency is
unwanted, for example, in the specification for a plan, or in sensor fusion
in robotics. But sometimes inconsistency is useful, e.g. when lawyers look
for inconsistencies in an opposition case, or in a brainstorming session
in research collaboration. Whether inconsistency is unwanted or useful,
there is a need to develop tolerance to inconsistency in application tech-
nologies such as databases, knowledgebases, and software systems. To
address this, inconsistency tolerance is being built on foundational tech-
nologies for identifying and analysing inconsistency in information, for
representing and reasoning with inconsistent information, for resolving
inconsistent information, and for merging inconsistent information. In
this introductory chapter, we consider the need and role for inconsis-
tency tolerance, and briefly review some of the foundational technologies
for inconsistency tolerance.

1 The Need for Inconsistency Tolerance

Traditionally the consensus of opinion in the computer science community is
that inconsistency is undesirable. Many believe that databases, knowledgebases,
and software specifications, should be completely free of inconsistency, and try
to eradicate inconsistency from them immediately by any means possible. Others

* Affiliated with the School of Computing Science at Simon Fraser University, Burnaby,
Canada.

L. Bertossi et al. (Eds.): Inconsistency Tolerance, LNCS 3300, pp. 1-14, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 L. Bertossi, A. Hunter, and T. Schaub

address inconsistency by isolating it, and perhaps resolving it locally. All seem
to agree, however, that data of the form g and —g, for any proposition g cannot
exist together, and that the conflict must be resolved somehow.

This view is too simplistic for developing robust software or intelligent sys-
tems, and furthermore, fails to use the benefits of inconsistent information in
intelligent activities, or to acknowledge the fact that living with inconsistency
seems to be unavoidable. Inconsistency in information is the norm in the real-
world, and so should be formalized and used, rather than always rejected.

There are cases where ¢ and —q can be perfectly acceptable together and
hence need not be resolved. Consider for example an income tax database where
contradictory information on a taxpayer can be useful evidence in a fraud inves-
tigation. Maybe the taxpayer has completed one form that states the taxpayer
has 6 children (hence the tax benefits for that) and completed another that
states the taxpayer has O children. Here, this contradictory information needs
to be kept and reasoned with. A similar example is in law courts where lawyers
on opposing sides (for prosecution and defence) will seek contradictions in the
opposition. Moreover, they will try to direct questions and to use evidence to
engineer the construction of contradictions.

In other cases, ¢ and —q serve as a useful trigger for various logical actions.
Inconsistency is useful in directing reasoning, and instigating the natural pro-
cesses of argumentation, information seeking, multi-agent interaction, knowledge
acquisition and refinement, adaptation, and learning.

In a sense, inconsistency can be seen as perfectly acceptable in a system, or
even desirable in a system, as long as the system has appropriate mechanisms
for acting on the inconsistencies arising [27]. Of course, there are inconsistencies
that do need to be resolved. But, the decision to resolve, and the approach to
resolution, need to be context-sensitive. There is also the question of when to
resolve inconsistencies. Immediate resolution of inconsistencies can result in the
loss of valuable information if an arbitrary choice is made on what to reject.
Consider for example the requirements capture stage in software engineering.
Here premature resolution can force an arbitary decision to be made without
the choice being properly considered. This can therefore overly constrain the
requirements capture process.

The call for robust, and intelligent, systems, has led to an increased interest in
inconsistency tolerance in computer science. However, introducing inconsistency
tolerance is a difficult and challenging aim. In the next section, we consider some
of the problems, at the level of formal logic, arising from inconsistency. Then, in
the subsequent section, we review a range of foundational technologies for use
in developing inconsistency tolerance.

2 Problems Arising from Inconsistency

Classical mathematical logic is very appealing for knowledge representation and
reasoning: The representation is rich and the reasoning powerful. Furthermore,
classical reasoning is intuitive and natural. The appeal of classical logic however,

Introduction to Inconsistency Tolerance 3

extends beyond the naturalness of representation and reasoning. It has some very
important and useful properties which mean that it is well-understood and well-
behaved, and that it is amenable to automated reasoning.

Much of computer science is based on classical logic. Consider for exam-
ple hardware logic, software specifications, SQL databases, and knowledgebase
systems. Classical logic is therefore a natural starting point for considering in-
consistency tolerance. Inconsistency is very much a logical concept, and so we
should consider the effect of inconsistency on classical logic.

Unfortunately, inconsistency causes problems in reasoning with classical logic.
In classical logic, anything can follow from an inconsistent set of assumptions.
Let A be a set of assumptions, let - be the classical consequence relation, and
let @ be a formula, then A a denotes that « is an inference from A using
classical logic. A useful definition of inconsistency for a set of assumptions A is
that if AF o and A F —a then A is inconsistent. A property of classical logic is
that if A is inconsistent, then for any 3 in the language, A - 8. This property
results from the following proof rule, called ez falso quodlibet, being a valid proof
rule of classical logic.

a e

B

So inconsistency causes classical logic to collapse. No useful inferences follow
from an inconsistent set of assumptions. It can be described as exploding, or
trivialised, in the sense that all formulae of the language are consequences of
inconsistent set of assumptions.

Since much of computer science is based on classical logic, the collapse of
it in the face of inconsistency is a profound problem. We need to define the
mechanisms for handling information in terms of a logic. So if classical logic is
not appropriate for inconsistent information, we need to look elsewhere for a
logic for inconsistency tolerance, or we need to consider mechanisms on top of
classical logic to manage the information.

Even if we adopt a logic that does not collapse, i.e. ex falso quodlibet does
not hold, we still need ways to handle the conflicting information. If we have a
database that contains both o and o, we may need to answer the query “is o
true?”. An obvious strategy is that we only answer queries after we have cleaned
the data by removing information to restore consistency. Another strategy is to
take credulous approach to answering queries and so answer positively if the
fact is in the database irrespective of the existence of its complement: In this
case the answer would be “yes”. A third strategy is to take a skeptical approach
to answering queries and so answer positively if the fact is in the database
and its complement is not: In this case the answer would be “no”. A fourth
strategy is a qualified credulous approach which refines the credulous inference
with information about the existence of its complement.

The strategy of restoring consistency is not necessarily simple. For a set of
formulae A, one option is to remove the union of the minimally inconsistent
subsets to fix the inconsistency. Consider the set of beliefs.

A={o,a— 6,8 — 7,6 - 6,6}

4 L. Bertossi, A. Hunter, and T. Schaub

There is only one minimally inconsistent subset of A:
{a,a — 8,6 — —f,6}.

To revise A, we can subtract the minimally inconsistent subset, and use
the remainder as the revised knowledgebase. This is the same as taking the
intersection of the maximally consistent subsets as the revised knowledgebase.
So the revised knowledgebase is {# — ~}. From this example, we see that the
subtraction of the minimally inconsistent subset from the knowledgebase is quite
drastic. An alternative is just to remove the smallest number of assumptions in
order to restore consistency. Given A, we only need to remove one formula to
restore consistency. There are four possible clauses we could choose for this:

o
a—
B —5 =0

)

So this gives us four choices for a revised set of assumptions. Each of these
choices is a maximally consistent subset.

Al = {a’IB_”Yaéﬁ—‘ﬁvé}
A2 = {a,a—>ﬂ,ﬂ—>7,5}
A3:{Q,0¢——>ﬂ,ﬂ—>fy,6—>—|ﬂ}
A4={a—+ﬁ,,@——>7,6—>—1ﬁ,5}

Clearly, such a revision is much more modest. But then we see we have a
choice to make which may call for further knowledge and/or further strategies.

The conclusion we can draw from the discussions and examples in this section
is that whilst classical logic is very useful in computer science, it needs to be
adapted for use with inconsistent information, and that adapting it can involve
some difficult issues. This has been the subject of much research, some of which
we touch upon in the next section.

3 Foundational Technologies for Inconsistency Tolerance

Inconsistency tolerance is being built on foundational technologies for identifying
and analysing inconsistency in information, for representing and reasoning with
inconsistent information, for resolving inconsistent information, and for merging
inconsistent information.

The central position is that the collapse of classical logic in cases of inconsis-
tency should be circumvented. In other words, we need to suspend the principle
of absurdity (ex falso quodlibet) for many kinds of reasoning. A number of useful
proposals have been made in the field of paraconsistent logics.

In addition, we need strategies for analysing inconsistent information. This
need has in part driven the approach of argumentation systems which compare

Introduction to Inconsistency Tolerance 5

pros and cons for potential conclusions from conflicting information. Also impor-
tant are strategies for isolating inconsistency and for taking appropriate actions,
including resolution actions. This calls for uncertainty reasoning and meta-level
reasoning. Furthermore, the cognitive activities involved in reasoning with in-
consistent information need to be directly related to the kind of inconsistency.
So, in general, we see the need for inconsistency tolerance giving rise to a range
of technologies for inconsistency management.

3.1 Consistency Checking

In order to manage inconsistency in knowledge, we need to undertake consis-
tency checking. However, consistency checking is inherently intractable in the
propositional case. To address this problem of the intractability, we can consider
using (A) tractable subsets of classical logic (for example binary disjunctions
of literals [30]), (B) heuristics to direct the search for a model (for example in
semantic tableau [56], GSAT [67], and constraint satisfaction [22]), (C) some
form of knowledge compilation (for example [53,19]), and (D) formalization of
approximate consistency checking based on notions described below, such as
approximate entailment [49, 66], and partial and probable consistency.

Heuristic approaches, which have received a lot of attention in automated
reasoning technologies and in addressing constraint satisfaction problems, can
be either complete such as semantic tableau or Davis-Puttnam procedure [20] or
incomplete such as in the GSAT system [68]. Whilst in general, using heuristics
to direct search has the same worst-case computational properties as undirected
search, it can offer better performance in practice for some classes of theories.
Note, heuristic approaches do not tend to be oriented to offering any analysis of
theories beyond a decision on consistency.

In approximate entailment, classical entailment is approximated by two se-
quences of entailment relations. The first is sound but not complete, and the
second is complete but not sound. Both sequences converge to classical entail-
ment. For a set of propositional formulae A, a formula o, and an approximate
entailment relation |=;, the decision of whether A =; a holds or A }£; a holds
can be computed in polynomial time.

Partial consistency takes a different approach to approximation. Furthermore,
consistency checking for a set of formulae A can be prematurely terminated when
the search space exceeds some threshold. When the checking of A is prematurely
terminated, partial consistency is the degree to which A is consistent. This can
be measured in a number of ways including the proportion of formulae from
A that can be shown to form a consistent subset of A. Maximum generalized
satisfiability [57] may be viewed as an example of this.

Yet another approach is probable consistency checking [40]. Determining the
probability that a set of formulae is consistent on the basis of polynomial time
classifications of those formulae. Classifications for the propositional case can be
based on tests including counting the number of different propositional letters,
counting the multiple occurrences of each propositional letter, and determining
the degree of nesting for each logical symbol. The more a set of formulae is

6 L. Bertossi, A. Hunter, and T. Schaub

tested, the greater the confidence in the probability value for consistency, but
this is at the cost of undertaking the tests.

Identifying approximate consistency for a set of formulae A is obviously not
a guarantee that A is consistent. However, approximate consistency checking is
useful because it helps to focus where problems possibly lie in A, and to prioritize
resolution tasks. For example, if A and I" are two parts of a larger knowledgebase
that is thought to be inconsistent, and the probability of consistency is much
greater for A than I', then I' is more likely to be problematical and so should
be examined more closely. Similarly, if A and I" are two parts of a larger knowl-
edgebase that is thought to be inconsistent, and a partial consistency identified
for A is greater than for I', then I" seems to contain more problematical data
and so should be examined more closely by the user.

In databases, inconsistency is a notion relative to the satisfaction of a given
set of integrity constraints (ICs), which are properties of the admissible database
states. They impose semantic restrictions on the data in order to capture the
correspondence of the data with the outside world that is being modelled by
the database. We say that the database is inconsistent when the ICs, expressed
as logical formulas, are not satisfied by the database, which can be seen as a
first-order structure [64].

From this point of view, checking satisfaction of integrity constraints amounts
to determining is a sentence is true in the given database. This can be easily done
by posing and answering a query to/from the database. Taking into account that
databases evolve as updates on it are executed, it becomes necessary to check
every database state generated in this way. This process can be simplified using
an inductive approach [54]: If the database was consistent before executing a
certain update, then according to the kind of update and the kind of IC, it may
be necessary to check only a formula that is much simpler that the original IC; or
nothing at all if the update is irrelevant to the IC at hand [13]. Most approaches
to consistency handling in database are directed to either detect potential incon-
sistencies, so that a problematic update is rejected before execution, or to accept
the update even if an inconsistency is produced, but then detect or make a di-
agnosis of the data participating in the inconsistency, followed by an additional,
remedial or compensating update that restores or enforces consistency [32, 16].

Clearly each approach to making consistency checking viable involves some
form of compromise, and none is perfect for all applications. We therefore need a
variety of approaches with clearly understood foundations and inter-relationships
with other approaches. Furthermore, different techniques may give us different
perspectives on inconsistencies in a given knowledgebase.

3.2 Paraconsistent Logics

Reasoning with inconsistency involves some compromise on the inferential ma-
chinery of classical logic. There is a range of proposals for logics (called para-
consistent logics) for reasoning with inconsistency. Each of the proposals has
advantages and disadvantages. Selecting an appropriate paraconsistent logic for
an application depends on the requirements of the application.

Introduction to Inconsistency Tolerance 7

Types of paraconsistent logic that are proving to be of use for knowledge rep-
resentation and reasoning in intelligent computing systems include: (1) Weakly-
negative logics which use the full classical language, but a subset of the classical
proof theory [21,5]; (2) Four-valued logics which use a subset of the classical
language and a subset of the classical proof theory, together with an intuitive
four-valued semantics [6,63,4]; (3) Signed systems which involve renaming all
literals in a theory and then restoring some of the original theory by progressively
adding formal equivalences between the original literals and their renamings [10];
and (4) Quasi-classical logic which uses classical proof theory but restricts the
notion of a natural deduction proof by prohibiting the application of elimination
proof rules after the application of introduction proof rules [11, 35, 36).

These options behave in quite different ways with sets of assumptions. None
can be regarded as perfect for handling inconsistent information in general.
Rather, they provide a spectrum of approaches. However, in all the approaches
the aim is to stay close to classical reasoning, since, as we have acknowledged,
classical logic has many appealing features for knowledge representation and
reasoning.

Paraconsistent logics are central to developing tolerance to inconsistency. Key
research frontiers on this subject include: (1) developing a deeper understand-
ing of the relationship of paraconsistency and substructural logics (for more
information see Chapter 9 by John Slaney entitled “Relevant Logic and Para-
consistency”); (2) developing a deeper understanding of the computational com-
plexity of paraconsistent logics (for more information see Chapter 6 by Sylvie
Coste-Marquis and Pierre Marquis entitled “On the Complexity of Paraconsis-
tent Inference Relations”); (3) developing automated reasoning technology for
paraconsistent logics such via quantified Boolean formulae (for more informa-
tion see Chapter 4 by Philippe Besnard, Torsten Schaub, Hans Tompits, and
Stefan Woltran entitled “Representing Paraconsistent Reasoning via Quantified
Boolean Formulae”).

3.3 Argumentation Systems

Argumentation is an important cognitive activity that draws on conflicting
knowledge for decision-making and problem solving. It normally involves identi-
fying relevant assumptions and conclusions for a given problem being analysed.
Furthermore, this often involves identifying conflicts, resulting in the need to
look for pros and cons for particular conclusions. This may also involve chains
of reasoning, where conclusions are used in the assumptions for deriving further
conclusions. In other words, the problem may be decomposed recursively.

Coalition Systems. These are based on identifying sets of arguments that de-
fend each other against counter-arguments by banding together for self-defence.
The seminal proposal that can be described as using coalitions is by Dung [24].
This approach assumes a set of arguments, and a binary “attacks” relation be-
tween pairs of arguments. A hierarchy of arguments is then defined in terms of
the relative attacks “for” and “against” each argument in each subset of the

8 L. Bertossi, A. Hunter, and T. Schaub

arguments. In this way, for example, the plausibility of an argument could be
defended by another argument in its coalition (i.e. its subset).

Coherence Systems. One of the most obvious strategies for handling inconsis-
tency in a knowledgebase is to reason with consistent subsets of the knowledge-
base. This is closely related to the approach of removing information from the
knowledgebase that is causing an inconsistency. In coherence systems, an argu-
ment is based on a consistent subset of a inconsistent set of formulae — the incon-
sistency arises from the conflicting views being represented. Further constraints,
such as minimality or skeptical reasoning, can be imposed on the consistent sub-
set for it to be an allowed argument. This range of further constraints gives us
a variety of approaches to argumentation including [52, 14,7, 8,25, 2, 34, 12].

Defeasible Logics. There are a number of proposals for defeasible logics. The
common feature for these logics is the incorporation of a defeasible implication
into the language. Defeasible logics have their origins in philosophy and were
originally developed for reasoning problems similar to those addressed by non-
monotonic logics in artificial intelligence. In [59, 60], Pollock conceptualises the
notions of reasons, prima facie reasons, defeaters, rebutting defeaters, and un-
dercutting defeaters, in terms of formal logic. Arguments can then be defined
as chains of reasons leading to a conclusion with consideration of potential de-
featers at each step. Different types of argument occur depending on the nature
of the reasons and defeaters. This has provided a starting point for a number
of proposals for logic-based argumentation including abstract argument systems
[71], conditional logic [55], and ordered logic [47].

There are many proposals for formalisms for logic-based argumentation. For
general reviews of formalisms for argumentation see [31, 70, 61, 17]. Furthermore,
some of these formalisms are being developed for applications in legal reasoning
[62], in medical reasoning and risk assessment [26], and in agent-based systems
[68]. A review of argumentation systems that relate proposals to potential appli-
cation areas in knowledge engineering, decision-support, multi-agent negotiation,
and software engineering, is given in [15].

3.4 Inconsistency Analysis

Given an inconsistent set of formulae A, we may need to know more about the
nature of the inconsistency and the nature of information being offered by A. In
some sense, we may desire inconsistency analysis based on notions that can be
measured in A.

The seminal work on measuring inconsistency is by Shannon [69]. This work,
based on probability theory, can be used in a logical setting when the worlds are
the possible events. This work is also the basis of Lozinskii’s work [51] for defining
the quantity of information of a formula (or knowledgebase) in propositional
logic. But this definition is not suitable when the knowledgebase is inconsistent.
In this case, it has no classical model, so we have no “event” to count. To address
this, models of maximal consistent subsets of the knowledgebase are considered.

Introduction to Inconsistency Tolerance 9

Another related measure is the measure of contradiction. It is usual in clas-
sical logic to use a binary measure of contradiction: a knowledgebase is either
consistent or inconsistent. This dichotomy is obvious when the only deductive
tool is classical inference, since inconsistent knowledgebases are of no use. But,
as we have identified earlier, there are now a number of paraconsistent logics
developed to draw non-trivial conclusions from an inconsistent knowledgebase.
So this dichotomy is not sufficient to describe the measure of contradiction of a
knowledgebase, one needs more fine-grained measures.

Some interesting proposals have been made for this including: Consistency-
based analyses that focus on the consistent and inconsistent subsets of a knowl-
edgebase [39]; Information theoretic analyses that adapt Shannon’s information
measure [51,72]; Probabilistic semantic analyses that consider maximal consis-
tent probability distributions over a set of formulae [42,43]; Epistemic actions
analyses that measure the degree of information in a knowledgebase in terms of
the number of actions required to identify the truth value of each atomic proposi-
tion and the degree of contradiction in a knowledgebase in terms of the number of
actions needed to render the knowledgebase consistent [44]; and Model-theoretic
analyses that are based on evaluating a knowledgebase in terms of three or four
valued models that permit an “inconsistent” truth value [33,37, 38].

This topic is the basis of Chapter 7 by Anthony Hunter and Sebastien
Konieczny entitled “Approaches to Measuring Inconsistent Information”.

3.5 Belief Revision

Given a knowledgebase A, and a revision «, belief revision theory is concerned
with the properties that should hold for a rational notion of updating A with
a. If AU« is inconsistent, then belief revision theory assumes the requirement
that the knowledge should be revised so that the result is consistent.

The AGM axioms, by Alchurron, Gardenfors and Makinson [1,29], are pos-
tulates to delineate the behaviour of revision functions for belief sets (consider
this as the set of all inferences obtained from a set of formulae). In the revision
operation, as little of the belief set is changed as possible in order to include
some new information. This requirement to change as little as possible precludes
the change from a consistent set to an inconsistent set. In other words, some
beliefs will be removed in order to maintain consistency.

The postulates appear as rational and intuitive properties that would be
highly desirable. However, delivering efficient and effective systems that meet the
postulates has proved to be challenging. There have been many developments of
belief revision theory including iterated belief revision [18, 48], and relating belief
revision to database updating [41]. These also offer intuitive abstract constraints
for revision/updating. For a review of belief revision theory see [23].

There are some more concrete proposals for knowledgebase merging that ad-
here to belief revision postulates. In Konieczny and Pino Perez [45], there is a
proposal for merging beliefs based on semantically characterizing interpretations
which are “closest” to some sets of interpretations. But the approach does not

