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PREFACE

In the present Volume II of our three-volume work we continue to discuss
algorithmic techniques that can be used to construct either exact or approxi-
mate solutions to problems in complex analysis. A focal point for these
applications is the evaluation and manipulation of solutions of analytic
differential equations. Successive chapters deal with the representation of
solutions by (convergent or divergent) series expansions, with the method of
integral transforms, with asymptotic analysis, and with the representation
of special solutions by continued fractions. The gamma function is dealt with
in the opening chapter in the context of product expansions of analytic
functions.

Together with its companions, this volume provides a fair amount of
information on some of the more important special functions of mathemati-
cal physics. However, our treatment of these functions is unconventional in
its organization. Whereas the conventional treatment proceeds function by
function, giving to each function its due share of series and integral represen-
tations, and of asymptotic analysis, our treatment proceeds by general
methods and problems rather than by individual functions. Special results
thus appear mainly as applications of general principles. The same
methodology will be followed in Volume III; for instance, addition theorems
will be considered in the context of partial differential equations.

Although I hope that my program has enabled me to illuminate the basic
properties of special functions such as the gamma function, the
hypergeometric function, the confluent hypergeometric function, and the
Bessel functions, it must be pointed out that a full in-depth treatment of any
class of special functions was neither intended nor possible. For more
detailed information the reader should turn either to specialized treatises or
to the monumental Bateman manuscript project (Erdélyi [1953], [1955]),
which provides an essentially complete collection of results known up to the
early 1950s.

To call this treatment of complex analysis computational is not meant to
imply that I deal exhaustively with the problem of obtaining numerical
values of a given special function for all possible values of the variable and of
the parameters. This topic has grown into a far too specialized and refined
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iv PREFACE

science to be treated thoroughly in a book that also must deal with many
other topics. The reader is referred to Gautschi [1975] for an excellent
survey of the methods that are currently employed. Questions of computa-
tional efficiency, including the manipulation of power series, will be dealt
with in Chapter 20 (Volume III) of the present work.

The contents of individual chapters are, briefly, as follows. Chapter 8, on
infinite products, features, after the necessary preliminaries, some products
of importance in number theory, including Jacobi’s celebrated triple product
identity. The striking combinatorial implications of this identity seem
appropriate as an eye-opener to the joys of classical analysis. We then
proceed to a standard treatment of the gamma function, proving the
equivalence of the definitions by Weierstrass, Gauss, Euler, and Hankel.
Stirling’s formula is obtained via the Weierstrass definition; derivations
from the other three definitions are contained in Chapter 11. The chapter
concludes with a discussion of integrals of the Mellin-Barnes type and their
application to hypergeometric functions.

The next chapter, on ordinary differential equations, begins with a
standard presentation of the analytic theory from the matrix point of view.
Here we can apply some of the material given in Chapter 2 on analytic
functions with values in a Banach algebra. The treatment of the confluent
and of the standard hypergeometric equations is more detailed than is
customary in more theoretically oriented texts. In particular we present, on
the basis of Riemann’s epochal paper [1857], a complete theory of the linear
and the quadratic transforms of the hypergeometric series. Because
Legendre functions are merely hypergeometric functions permitting quad-
ratic transforms, written in a different notation; we can dispose of these
functions very quickly.

Chapter 10, on integral transforms, begins with a broad discussion of the
Laplace transform from an elementary point of view, avoiding advanced real
variable theory. To present a clean solution of the inversion problem, we
provide a self-contained discussion of the Fourier integral theorem (for
piece-wise continuous L; functions). We next apply the Laplace transform
to Dirichlet series and use this opportunity to give a short account of the
Riemann zeta function and its connection with the prime number theorem.
A presentation of Polya’s theory of Laplace transforms of entire functions of
exponential type, with its fascinating link between the growth of the original
function in a given direction and the location of the singularities of the image
function, follows. The next section, on discrete Laplace transforms, contains
some generalizations of Polya’s theory suggested by the late H. Rutishauser.
The chapter concludes with a discussion of the Mellin transform, and of
some simple applications of the integral transform idea to problems in
mathematical physics.
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In Chapter 11, on asymptotics, we have tried, first of all, to give a clear
definition of asymptotic series, a concept that is notoriously difficult to
absorb for the beginning student. We then prove the important result that
the (generally diverging) formal series solutions to differential equations
with irregular singular points are asymptotic to appropriate actual solutions.
In addition to standard topics, such as Watson’s lemma, Laplace’s method,
the method of steepest descent, Darboux’s method, and the Euler-
Maclaurin sum formula, we then present some less orthodox subjects such as
general asymptotic series (in particular, asymptotic factorial series, for
which a useful analog of Watson’s lemma is given), and the numerical
evaluation of limits by the Romberg algorithm.

The last chapter of this volume, on continued fractions, presented a
special challenge to the expositor because the analytical theory of continued
fractions is seldom presented in a larger context in a textbook. A novel
feature here is the prominence given to Moebius transformations, and with
them to the geometric point of view. This not only enables us to deal
efficiently with the formal aspects of continued fractions, but also permits us
to treat questions of convergence in an intuitively appealing manner. Once
again, the qd algorithm makes its appearance; here it is used to establish
some classical continued fractions representing hypergeometric functions.
We then discuss the division algorithm and use it to give an alternate
solution of the stability problem for polynomials. The second half of the
chapter is devoted to continued fractions of the Stieltjes type. Contrary to
other presentations, in which such fractions are merely incidental to a
discussion of the moment problem, continued fractions and the functions
represented by them here are at the center of interest. Our approach enables
us to encompass in a very natural way topics of general interest such as the
Stieltjes integral, normal families, Vitali’s theorem, and the representation
formulas of Herglotz, Hamburger, and Nevanlinna for functions with values
in a circular region. Some of these topics will be required again in Volume
III. We then proceed to the Carleman convergence criterion and more
generally to various estimates for the truncation error, valid also when the
corresponding power series has radius of convergence zero. Numerous
applications, some of them new, should demonstrate the usefulness of the
theory.

As in Volume I, I have restrained myself from using an excess of
specialized mathematical notation and terminology to make my subject
matter accessible to readers with a variety of backgrounds. Although power
series are still favored, this volume can be read without knowing in detail the
formal power series approach to complex analysis presented in Volume I
Even within this volume, the chapters are reasonably self-contained to make
our text useful also to the casual peruser. Courses of varying length on
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aspects of applied and computational analysis could be based on almost any
combination of chapters; in fact, most of the material was presented in the
form of such courses at the ETHZ. By exposing the student to a variety of
techniques and applications, we are trying to educate applied mathemati-
cians who are able to contribute to the progress of science by their general
expertise as well as by specialized research.

Once more, it is my pleasure to express my thanks to the many individuals
who have helped me along in my expository endeavors. In addition to the
teachers and collegues mentioned in the preface to Volume I, I wish to
record my indebtedness to J.-P. Berrut, P. Geiger, M. Gutknecht, E. Héne,
M.-L. Henrici, and J. Waldvogel, who have read parts of the manuscript,
corrected errors, and suggested numerous improvements. M. Gutknecht, in
addition, wrote the programs for drawing the graphs of the gamma function
that appear in Chapter 8. R. Askey and J. F. Kaiser supplied valuable
information. R. P. Boas provided not only encouragement but also some
important references. During my stay at the Bell Laboratories in 1975, D.
D. Warner substantially deepened my understanding of continued fraction
theory.

I also wish to express my appreciation to the staff of John Wiley & Sons,
who once more handled all problems that arose in the production of a
manuscript of mine in the most expert and professional manner.

I dedicate this volume to my wife, who by her optimism and good
judgment has been of invaluable help in making the many decisions that
were necessary to shape my manuscript into its final form.

PETER HENRICI

Ziirich, Switzerland
September 1976
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INFINITE PRODUCTS

§8.1. DEFINITION AND ELEMENTARY PROPERTIES

Let {a, } be a sequence of complex numbers. It is intuitively clear what is to
be understood by the infinite product:

[ee]

IT a.=aiasa;5.... (8.1-1)
n=1
We are to form the sequence of partial products {p,}, where p; = a;,
D2 = aia,, p3 = aia.as, . ... This sequence is somehow to be identified
with the infinite product a;a.as; . . . . It is clear, however, that to write down
the factors of the product conveys more information than to write down
merely the sequence of partial products. If one factor, say a,, is zero, then all
partial products p,, are zero for m =n, and it is impossible to recover the
values of the factors a,, from the sequence of partial products for m > n.
(Contrary to this, the terms of an infinite series can always be recovered from
the sequence of its partial sums.) For this reason we shall adopt the following
formal definition (see Buck [1965], p. 158):

An infinite product is an ordered pair [{a,}y, {p.}1] of sequences, where
ai, a, . . . are complex numbers, and where p, = a1a,---a,,n=1,2,....

The numbers a,, and p,, are, respectively, called the nth factor and the nth
partial product of the infinite product [{a,},{p.}]. Once this definition is
understood, it is completely acceptable to denote an infinite product by a
symbol such as (8.1-1), which exhibits only the factors.

Some difficulties also arise if we try to define the concepts of convergence
and of value for infinite products. Proceeding as in the case of infinite series,
it would be tempting to call the product (8.1-1) convergent if the limit

lim p, = p (8.1-2)

n—>oo

exists, and to define p as the value of the product. In the interest of
formulating simple necessary and sufficient conditions for convergence, it

1



2 INFINITE PRODUCTS

is advantageous, however, to call a product of nonzero factors convergent
only if the limit (8.1-2) exists and is different from zero. If a product has zero
factors, the limit of its partial products always exists and has the value zero.
Convergence would thus not depend on the whole sequence of factors. To
avoid this exceptional situation, we call a product with zero factors con-
vergent if the product of the nonzero factors converges in the foregoing sense.
Thus, in summary, we adopt the following

DEFINITION

The product (8.1-1) is said to converge if and only if at most a finite number of
its factors are zero and if the sequence of partial products formed with the
nonzero factors has a limit which is different from zero.

Let [, a, be a convergent infinite product, and let p, :=aa;* * - an,
possible zero factors excluded. Then we have, for n sufficiently large,
a, = Pn/Pn-1- Because p, - p # 0 there follows

lim a, =1. (8.1-3)
Thus in a convergent infinite product the factors must tend to one. In view of

this it is customary to write infinite products in the form
s o]

[1 A+a,),

n=1
so that a, » 0 now is a necessary condition for convergence. It is easy to see
that this condition is not sufficient by considering the example a,, ‘= 1/n,n =
1,2,.... Here

1 1 1 1 1
(1) (1) - (14 D) > 1w (1L - 4),
i ( 1 2 1 n : 1 2+ +n

and the product is divergent, because the harmonic series is divergent.

The logarithm of a finite product equals the sum of the logarithms of the
factors. We thus may expect to derive convergence criteria for products from
convergence criteria for sums by taking logarithms. We are led to consider
the infinite series

T Lol $a), (8.1-4)
n=1

where, for any z #0, Log z denotes the principal value of the logarithm,
here defined by the condition —7 <Im Log z <. Let s, be the nth partial
sum of (8.1-4). Then p, = e’", and if s, > s, it follows from the continuity of
the exponential function that p, - p = e’ #0. Thus the convergence of
(8.1-4) is a sufficient condition for the convergence of the infinite product.

We now shall show that this condition is also necessary. Suppose that
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pn—p #0. We let ¢ := Im Log p and define a single-valued branch log*z of
log z by the condition ¢ — 7 <Im log*z < ¢ + 7. Then log*z is continuous in
the vicinity of z := p, and there follows

log*p, > Log p (n— o). (8.1-5)

We cannot be sure that s, =log*p, [because the branches of the logarithms
in (8.1-5) have already been chosen] but it is certainly true that

s, =log*p, + h,2i, (8.1-6)

where h,, is some well-determined integer. We wish to show that lim,,,« s,
exists, and in view of (8.1-5) this amounts to showing that h, = h,_, for all
sufficiently large n. Taking the difference of two consecutive termsin (8.1-6),

we find )
Log(1+a,)=log*p, —log*p,—1+ (h, —h,_1)2mi

which we write in the form
(h, —h,—1)2mi = Log(1+a,)+[log*p,—1 —Log p]
—[log*p, —Log p].

For sufficiently large values of n, [Im Log(1+a,)| <2/3 in view of a, >0,
and |[Im(log*p, —, —Log p)| <2#/3 in view of (8.1-5). Thus ultimately

|hy — b2 <27,
which implies that A, = const and s, - s, as desired. W

Altogether we have proved:

THEOREM 8.1a

An infinite eoroduct [1;—, (1+a,) with nonzero factors converges if and only if
the series Y., _, b, converges, where b, =Log(1+ a,) (principal value).

A necessary condition for the convergence of the product [ (1+a,) or of
the series 2 Log(1 +a,) is that a,, » 0. Now if a, > 0, Log(1 + a,) asymptoti-
cally behaves like a,,. In fact, from

z 1 z
Logti+2)= [ a= [ (1-755)
g(1+2) 01+tdt " . 1+¢ ke

we have for |z| <3, integrating along the straight line segment,
Log(1+2z)=z(1+wz),
where |w|<1. Thus if |a,|<3, then

2|a'l|<| I‘og(l+an)| 2|an (81-7)
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Hence = [Log(1+ a,,)| converges and diverges simultaneously with X |a,.|. An
infinite product for which the series = Log(1 +a,) converges absolutely will
be called absolutely convergent. In this terminology, we have obtained:

THEOREM 8.1b

A necessary and sufficient condition for the absolute convergence of the
product [,_, (1+a,) is the absolute convergence of the series Zn 1 Qn.

The emphasis here is on absolute convergence. Simple examples (see
problems 9 and 10) show that the theorem is not true if the words ‘‘absolute
convergence’’ are replaced by “‘convergence.”

These definitions and theorems also apply to the pointwise convergence of
infinite products whose factors depend on a variable. A difficulty arises if we
wish to define uniform convergence, because of the vanishing of factors. For
definiteness, assume that the functions a, (z) are analytic on a region S, that
none of the functions 1+ a,(z) vanishes identically on S, and that at most
finitely many of these functions assume the value zero on S. The product

I (1+a,(2)

is said to converge uniformly on S if the sequence of partial products formed
with those factors that do not vanish on S converges to a limit #0 uniformly
for all z € S. With this convention, the following analog of Theorem 8.1b
holds and is proved similarly:

THEOREM 8.1¢

A necessary and sufficient condition for the absolute and uniform convergence
of the product 11 (1+a,(z)) is the absolute and uniform convergence of the
series 2 a,(z).

The fundamental theorem on uniformly convergent sequences of analytic
functions (Theorem 3.4b) shows that the values of a product of analytic
factors that is uniformly convergent on a set-§ define an analytic function on
S, even if the factors with zeros are included.

EXAMPLE

Let a,(z) = —z*/n?. We shall show that the product

ﬁ (1—%;) (8.1-8)

n=1

converges uniformly on every bounded set S. Indeed, let k be an integer such that S is
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contained in the disk |z|=< k. Omitting the first k factors, we obtain the product
o 22
I1 ( L= —5) ;
n=k+1 n

whose factors do not vanish on S. The series

L ( ZZ)
n=k+1 n2

converges uniformly and absolutely on S, because it is majorized by the converging
series k>3 (1/n”). Hence the uniform convergence follows by Theorem 8.1c. We
conclude that (8.1-8) represents an entire analytic function. Because the zeros of this
function are located at z==+1,+2, ..., we may expect it to be closely related to
(7z)7" sin(rz), which has the same zeros and the same value at z = 0. It is shown in
§8.3 that the two functions are, in fact, identical.

PROBLEMS
1. Show that

A0-59-4

n

2. In calculus it is shown that

w o 2°2:4:4:6:6---2n-2n
2 nwl1:3-3-5-5-7---2n-1)2n+1)

(Wallis’ formula). Show that this may be written

- (1)

—= 1-——=).

T nl—=Il (2n)?
3. Prove that

o . 1

IMIa+z")y=—

n=0 1_2

uniformly on every compact set contained in [z|<1.
4. Show that

T (1 +£) g =
n=1 n

represents an entire analytic function with zeros at the negative integers.
5. Let the real number ¢ be given in decimal representation,

Il EESCRRRY PRy M. Py, PR

Show that
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Show that for any z # 0,
sin 2z

I cos(27*z)=
k=0 22

[Using trigonometric identities, express the partial products as sums of cosines.
Then use the definition of the Riemann integral.]
Find the value of Vieta’s product,

NN N W

2V2 2V2V¥Y2 2V2 2V) ’

Following D. H. Lehmer (Amer. Math. Monthly, 1935), show that the value of
the infinite product

(- - 5 -

in which the successive denominators satisfy d,, = 6d,_, —d,, _», is purely imagi-
nary.

[Solve the recurrence relation for the d,. The resulting formula has a meaning
for nonintegral n, and there follows

d,
lim —— = 3+8.

n>wo Qp

Letting ¢, = tan(arg p,’*), where p, is the nth partial product, show that-

- dn/2+1 = dn/2 ]
" Zd,,/z ’

Show that the product

i (1+2)

n=2

is divergent, although the series X (—1)"/~/; is convergent.

Let
Wi’ 1 ., 1
Azp—1 = RS a,, = n1/3_1,n e N
Show that the product
I (1+a,)
n=3

is convergent (and, in fact, has the value 1), although the series = a, is
divergent.
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§8.2. SOME INFINITE PRODUCTS RELEVANT TO NUMBER
THEORY

The main purpose here is the study of certain classical infinite products with
variable factors. Although the functions defined by these products do not lie
in the mainstream of general complex analysis, some of the identities that
exist between them have striking combinatorial and numbertheoretical
applications.

The products in question are

p@)= T a+2",  q@= M a-2 62D

By the criterion of Theorem 8.1c, both products are uniformly and abso-
lutely convergent in any disk |z|<p where p <1. Hence they represent
analytic functions that can be expanded in Taylor series for |z|<1:

p(z)= OZ:O a,z", q(z) = Zo b.z". (8.2-2)

Because the products contain no zero factors, they are (by the definition of
convergence!) different from zero for |z|<1. Thus their reciprocals are
likewise analytic for |z| < 1; we put, in particular,

The coefficients a,, b,, ¢, can be evaluated very easily. Consider, for
example, the nth partial product of p(z),

pal(z) =TI (1+2%).
k=1

This is a polynomial of degree 3n(n +1), which we write as

(c0) WDk
pa(z) = kgoak z".

Because p,(z)—>p(z) locally uniformly in |z|<1, the basic theorem on
convergence of sequences of analytic functions (Theorem 3.4b) implies that
foreach k=0,1,...,

(n)

a; = lim ay”’.
n—->o
By comparing coefficients of 1, z, . . ., z" in the relation

Par1(z)=1+2""p,(2)



