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Preface

Database management systems (DBMS) are designed to manage large and complex
data sets. In the past several decades, advances in computing hardware and soft-
ware and the need to handle rapidly accumulating data archived in digital media
have led to significant progress in DBMS research and development. DBMS have
grown from simple software programs that handled flat files on mainframe comput-
ers, which were prohibitively expensive to all but a few prestigious institutions, into
today’s popular form of specialized software platforms underpinning wide ranges
of tasks, which include business transactions, Web searches, inventory manage-
ment, financial forecasts, multimedia development, mobile networks, pervasive
computing, and scientific knowledge discovery. Technologies of DBMS have also
become increasingly sophisticated, diverging from generic relational DBMS into
object-relational DBMS, object-oriented DBMS, in-memory DBMS, semantic Webs
data store, and specialized scientific DBMS. Given the sustained exponential data
growth rate brought forth by continued adoption of computing in major industries
and new inventions of personal digital devices, one can safely predict that DBMS
development will continue to thrive in the next millennium.

In this book, we want to share with our readers some fresh research perspectives
of post-genome biology data management, a fast-growing area at the intersection of
life sciences and scientific DBMS domains. Efficient experimental techniques, pri-
marily DNA sequencing, microarrays, protein mass spectrometers, and
nanotechnology instruments, have been riding the wave of the digital revolution in
the recent 20 years, leading to an influx of high-throughput biological data. This
information overload in biology has created new post-genome biology studies such
as genomics, functional genomics, proteomics, and metabolomics—collectively
known as “omics” sciences in biology. While most experimental biologists are still
making the transition from one-gene-at-a-time type of studies to the high-through-
put data analysis mindset, many leaders of the field have already begun exploring
new research and industrial application opportunities. For example, managing and
interpreting massive omics data prelude ultimate systems biology studies, in which
one may analyze disparate forms of biological data and uncover coordinated func-
tions of the underlying biological systems at the molecular and cellular signalling
network level. On the practical side, understanding diverse intricate interplays
between environmental stimuli and genetic predisposition through omics evidence
can help pharmaceutical scientists design drugs that target human proteins with
high therapeutic values and low toxicological profiles. With data management tools
to handle terabytes of omics data already released in the public domain, the promise
of post-genome biology looms large.

Xiii
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Compared with data from general business application domains, omics data has
many unique characteristics that make them challenging to manage. Examples of
these data management challenges are:

1. Omics data tends to have more complex and more fast-evolving data
structures than business data. Biological data representation often depends
on scientific application scenarios. For example, biological sequences such as
DNA and proteins can be either represented as simple character strings or
connected nodes in three-dimensional spatial vectors. Data representation is
an essential first step.

2. Omics data is more likely to come from more heterogeneously distributed
locations than business data. To study systems biology, a bioinformatics
researcher may routinely download genome data from the Genome
Database Center at the University of California, Santa Cruz, collect
literature abstracts from the PubMed database at the National Library of
Medicine in Maryland, collect proteome information from the Swiss-Prot
database in Switzerland, and collect pathway data from the KEGG database
in Japan. Data integration has to be carefully planned and executed.

3. Omics data tends to reflect the general features of scientific experimental
data: high-volume, noisy, formatted inconsistently, incomplete, and often
semantically incompatible with one another. In contrast, data collected from
business transactions tends to contain far fewer errors, is often more
accurate, and shows more consistencies in data formats/coverage.
Meticulous data preprocessing before knowledge discovery are required.

4. Omics data also lags behind business data in standard development. For
example, Gene Ontology (GO) as a standard to control vocabularies for
genes was not around until a decade ago, whereas standards such as
industrial product categories have been around for decades. The ontology
standards and naming standards for pathway biology are still under
development. This makes it difficult to perform mega collaboration, in
which cross-validation of results and knowledge sharing are both essential.

Despite all the challenges, modeling and managing biological data represent sig-
nificant discovery opportunities in the next several decades. The human genome
data bears the ultimate solutions of expanding the several thousand traditional
molecular drug targets into tens of thousands genome drug targets; molecular profil-
ing information, based on individuals using either the microarrays or the proteomics
platform, promises new types of molecular diagnostics and personalized medicine.
As new applications of massive biological data emerge, there will be an increasing
need to address data management research issues in biology.

In this compiled volume, we present to our readers a comprehensive view of
how to model the structure and semantics of biological data from public literature
databases, high-throughput genomics, gene expression profiling, proteomics, and
chemical compound screening projects. The idea of compiling this book, which we
found to be unique, stems from the editors’ past independent work in bioinformatics
and biological data management. While topics in this area are diverse and interdisci-
plinary, we focused on a theme for this book—that is, how to model and manage
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omics biological data in databases. By promoting this theme for the past decade
among ourselves and the contributing authors of this book, we have contributed to
solving complex biological problems and taking biological database management
problems to the next level. We hope our readers can extract similar insights by using
this book as a reference for future related activities.

There are 11 chapters presented in this book. Individual chapters have been
written by selected accomplished research teams active in the research of respective
topics. Each chapter covers an important aspect of the fast-growing topic of biologi-
cal database modeling concepts. Each chapter also addresses its topic with varying
degrees of balance between computational data modeling theories and real-world
applications.

In Chapters 1 through 5, we introduce basic biological database concepts and
general data representation practices essential to post-genome biology. First, bio-
logical data management concepts are introduced (Chapter 1) and major public
database efforts in omics and systems biology studies are summarized (Chapter 2).
Then, biomedical data modeling techniques are introduced (Chapter 3). Next, Gene
Ontology as an established basic set of controlled vocabulary in genome database
annotations is described (Chapter 4). Finally, the latest research on protein ontol-
ogy and the use of related semantic webs technologies are presented to enable read-
ers to make the connection between emerging biological data collection and
integration trends (Chapter 5).

In Chapters 6 through 9, we examine in detail how to develop data manage-
ment techniques to process and analyze high-throughput biological data through
case studies. First, quality control techniques to reduce variations during experi-
mental data collection steps are described (Chapter 6). Then, biological sequence
management experience for a fungi genomics project is discussed (Chapter 7). Next,
data management and data integration methods for microarray-based functional
genomics studies are investigated (Chapter 8). Finally, data management challenges
and opportunities for mass spectrometry based expression proteomics are presented
(Chapter 9).

In Chapters 10 and 11, we delve into the practical aspect, demonstrating how to
apply biological data management for drug discoveries. First, fundamental drug
discovery concepts based on macromolecular structural modeling are introduced
(Chapter 10); then, a data management software system that implements
high-throughput drug compound screenings is discussed (Chapter 11) to conclude
the book.

We hope this book will become a useful resource for bioinformatics graduate
students, researchers, and practitioners interested in managing post-genome biolog-
ical data. By studying the techniques and software applications described in this
book, we hope that bioinformatics students will use the book material as a guide to
acquire basic concepts and theories of post-genome biological data management,
bioinformatics practitioners will find valuable lessons for building future similar
biological data management systems, and researchers will find rewarding research
data management questions to address in the years to come.
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Introduction to Data Modeling

Amandeep S. Sidhu and Jake Chen

Scientific data is often scattered among heterogeneous data repositories. Exploring
data across multiple data repositories requires the ability to understand and corre-
late their structures (schemas). Such correlations need to address the diversity of
views of the scientific domain represented by different data repositories as well as
the diversity of data modeling languages used for expressing these views. In this
chapter, we introduce the concepts of data modeling and discuss its application to
biological databases.

1.1  Generic Modern Markup Languages

Modern markup languages, such as Standard Generalized Markup Language
(SGML) [1] and eXtensible Markup Language (XML) [2], which were initially con-
ceived for modeling texts, are now receiving increasing attention as formalisms for
data and knowledge modeling. XML is currently establishing itself as a successor of
HyperText Markup Language (HTML) for a better modeling of texts as well as of
other kinds of data. There are several reasons for this evolution. Even though multi-
ple databases may cover the same data, their focus might be different. Modern
markup languages such as SGML and XML are generic in that:

* They serve to specify the semantic structure, not the layout, of documents or
data items.

* They make it possible to freely specify application-dependent document or
data structures.

In the following, the term “data” refers also, but not exclusively, to text data.
Thus, a data item may consist of: (1) text only (such data items are also known as
human-readable documents); (2) nontext only (such data items are also known as
data-oriented documents); or (3) both (such data items are also known as
mixed-model documents). In the terminology of generic markup languages, data
items are called documents. In the following, the term “data item” is used in lieu of
“document” for stressing that not only (structured) texts are meant, but more gen-
erally (structured) data of any kind.
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Widespread specific markup languages such as PostScript or Rich Text Format
(RTF), whose conceptual roots go back to the 1970s, serve to specify the layout of
data items. Here, layout is not exclusively meant as the appearance of a data item
when printed on paper, but more generally as any kind of presentation of a data item
to human perception. Examples of such an extended notion of layout include the
formats of data items as they are displayed on a terminal screen, rendered in the
script on an output device, or presented by any other means on any device.

The family of generic markup languages started in the late 1980s with the con-
ception of its first specimen, SGML. The purpose of a generic markup language is to
specify the semantic—or logical—structure of data items, not their layout. In the fol-
lowing, the term “presentation” is reserved to refer to the layout of a data item in the
extended sense above, while the term “representation” refers to how semantics is
conveyed through structural elements of the underlying data modeling formalism.

The distinction between layout and structure is important, for a layout format is
device or system dependent, whereas a semantic structure should not be. It is desir-
able that the semantic structure of data items be specified independently of any lay-
out. This ensures both:

* Independence of data modeling from data usage;
* Independence of data modeling from presentation devices.

The first property, data independence from usage, is important because data is
rarely used in a single manner only. The second property, data independence from
presentation devices, is important for several reasons. To begin with, different kinds
of presentation devices require different layouts. For example, a structurally com-
plex data item is likely not to be displayed using identical layouts on standard size
screens and on small screens like those of cellular phones. Also, such devices are
likely to become technically obsolete sooner than data. Moreover, a presentation
format does not necessarily fully convey data semantics. For instance, it is common
practice to rely on printed text layout for conveying semantic structure when using
text processing systems or the markup language HTML. This practice often leads to
semantic losses, especially when files are transferred from one text processing sys-
tem to another, because the layout of the one system cannot always be faithfully
mapped into that of the other system.

In order to specify layouts for classes of documents specified in a generic markup
language, so-called style-sheet languages are used in addition. These languages basi-
cally allow the definition of layouts for those structural elements specified with the
markup language. Such definitions do not have to be unique, thus ensuring the desired
independence of the data from their presentations in various contexts.

Generic markup languages (like the XML family of languages) do not impose
any predefined structure, nor any predefined names for the structural elements
occurring in data items. Structure and names can be freely chosen, hence the denom-
ination of generic markup language. Thus, using generic markup languages it is pos-
sible to faithfully model the structure of data items needed in applications and to
name the structural elements of a chosen structure in a way that is natural in the
application context.



