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PREFACE

The 10th conference on "Methoden und Verfahren der mathema-
tischen Physik" was held on February 21-27, 1982 at the
"Mathematisches Forschungsinstitut Oberwolfach". The confer-
ence was organized by Bruno Brosowski (Frankfurt a.M.) and
Erich Martensen (Karlsruhe), Thirty-six papers were presented
and approximately 40 people attended from the following coun-
tries: Austria, Brazil, ESSR, Denmark, Great Britain, Hungary,
USA, West-Germany, and Yugoslavia.

The purpose of the conference was to apply the greatest
possible variety of methods of mathematical physics to a broad
scope of concrete problems. In addition, participation by rep-
resentatives of the various fields of application in physics,
engineering sciences, and industry was intended to promote co-
operation and mutual stimulation. Timely research results, re-
ﬁorted in the lectures, led to lively discussions and fruitful
scientific exchanges.

Special attention was devoted to problems of approximation
and optimization and to dynamical problems arising in mechanics,
fluid dynamics, plasma physics, and scattering theory; hereby
questions of mathematical modelling were also treated. A cen-
tral role was played by analytic and especially functional-
analytic methods for partial differential equations and inte-
gral equations but there were considered numerical methods,
too.

This volume contains the papers on dynamical problems in ma-
thematical physics presented to the conference. The papers on
approximation and optimization in mathematical physics appear
in volume 27 of this series.

Finally, we would like to thank all those who participated
in the conference or contributed to this volume. Thankslare
‘also due to the "Mathematisches Forschungsinstitut Oberwolfach®
for financial assistance and for the facilities provided.

August 1982

Bruno Brosowski Erich Martensen
Frankfurt a.M. Karlsruhe
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RADAR DETECTION, QUANTUM MECHANICS,
AND NILPOTENT HARMONIC ANALYSIS

Hans-Martin Hebsaker
Walter Schempp
Lehrstuhl fiir Mathematik I der Universitat Siegen
D-5900 Siegen

ABSTRACT.

As is well known, one of the fundamental tenets of
quantum mechanics is the Heisenberg uncertainty principle.
"Quantum mechanics'" stands here for: The quantum-mechanical
description, at a given instant of time, of a finite system
of non-relativistic microparticles. According to this
principle, not all physical quantities observed in any
realizable experiment (even in principle only) can be
determined with an arbitrarily high accuracy. There are
mutually exclusive ("conjugate") quantities the measurement
accuracies of which are interrelated by the uncertainty
relationsship. Even under ideal experimental conditions,

Jan increase in the measurement accuracy of one quantity

can be achieved only at the expense of decreasing the
measurement accuracy of another non-commutating quantity.
In the macro-world, there is a similar situation with

radar measurements. - It is the purpose of the present
paper to show that the real Heisenberg nilpotent group

and the symplectic group which forms a subgroub of 1its
automorphism group dominate the radar uncertainty principle
according to which there exists an ambiguity in determining
the target range and range rate simultaneously.
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In order to measure the range of a radar target it
is necessary to estimate the time x at which the echo
from it arrives at the receiver. If time is counted from
the transmission of the radar pulse, the range is %cx,
where c denotes the velocify of electromagnetic radiation.
In the case when the radar target is not stationary but

is moving relatively to the radar antenna, the carrier
frequency of the echo differs from that of the transmitted
radar pulse because of the Doppler effect. If we pick

the transmitted frequency @ as our natural reference fre-
quency, the Doppler frequency shift is given by

v
Y= 2=

“’

where v denotes the range rate, i.e., the component of

the target velocity in the direction of the radar antenna.
For instance, for a target moving at a rate of 500 m.p.h.
and for a carrier frequency = 3000 MHz, the Doppler
frequency shift is y = 4500 Hz, an appreciable fraction
of the 1 MHz bandwidth typical of radar pulse. Of course,
for much larger velocities encountered in satellites the
Doppler frequency shift will be even greater.

Whenever it is necessary to distinguish two narrowband
signals in the presence of white Gaussian noise, the cross-
correlatlon of the two signals involved plays an important
réle. In radar synthesis the parameters chiefly serving
to distinguish two echo signals are their arrival times
x and Doppler shifts y of their carrier frequencies from
a common reference value as pointed out above. If the -
signals are assigned the epoch -(1/2)x and +(1/2)x and
the carrier frequencies W -(1/2)y and W+(1/2)y, their
cross-correlation is termed the radar ambiguity function
with respect to the compiex envelope fcf(R) and can be
written (cf. Woodward [6])




RADAR DETECTION

HOL:x;y) = f(t+1/2x)f(t—l/zx)ezniytdt.
R

It should be observed that the function H(f;.,.) plays
an important rdle in optics as well where it is known
as the indeterminacy or spread function. In the case of
t,2

-(3)
a Gaussian envelope f: t ~*~aTe where the constant
‘anp is determined such that the total energy of the signal
equals 1, the radar ambiguity surface, i.e., the set H(f;R,R)

admits the following form over the (x,y)- plane:

X

OO
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Thus in the case of a single Gaussian pulse the ambiguity
surface is peaked merely at the origin (0,0) of the (x,y)-
plane and it exhibits no additional peaks elsewhere. However,
the range rate v of a target can be measured more accurately
if the transmitter sends out a train of coherent radar
pulses ‘of the same carrier frequency . Therefore, certain
radars transmit a sequence of coherent pulses in place

of a single pulse. For a repetition period To =‘10_3 sec

and a carrier frequency @ = 3000 MHz the ambiguity in

range rate

C

T
o

Avi= 5

amounts to 112 m.p.h. Supposing that the repeated pulse
admits a Gaussian envelope, the radar ambiguity surface
obtains by periodic superposition of plane wave fronts

of the following form:
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The figures displayed below in different perspectives
provide some impression of the whole radar ambiguity surface
for a suitable choice of the parameters T and To' The
taller the sidelobes, the greater the probability of errors
in the measurements, or "ambiguities'" in signal epoch
and Doppler frequency shift. The narrower (sharper) the
width of the radar ambiguity function in a given direction,
the higher the accuracy and resolution of the range and
range rate measurements if all the other conditions are
unchanged. It is desirable, therefore, for the central
peak of the radar ambiguity function (cf. Theorem 1 infra)
to be narrow, and for there to be as few and as low sidelobes
as possible.
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From the previous discussion it becomes apparent that
it is important to investigate the properties of the radar
ambiguity function H(f;.,.). In particular, it is important
for radar synthesis to know to what extent the radar ambiguity
surface determines the envelope f of the signal involved.

In order to solve this problem, it is helpful to
realize the analogies between radar measurements and quantum
mechanics. In the phase-space formulation of quantum mechanics
the Wigner quasiprobability distribution function associated
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with the wave function fef(Rn) is given by

P: R7OR" »(q,p) ~ f(q+1/2t)5(q—1/2t)e'2‘i<p't’dt.
R

Since P gives the probability that the coordinates and
the momenta have the values q and p, respectively, it
allows an elegant mathematical formulation of the uncertainty
relation (cf. Wigner [5]). Moreover, P plays an important
r8le in certain statistical reasonings of nuclear physics
as well. In the case n=1, the Fourier cotransform of P
coincides with the radar ambiguity function H(f;.,.);
see Pool [1]. On the other hand, the real Heisenberg nilpotent
group A(R™) forms the group-theoretic embodiment of the
Heisenberg canonical commutation relations. Therefore,
nilpotent harmonic analysis seems to be .a useful tool
Aalso for a treatment of the problems of radar synthesis.

The real Heisenberg nilpotent group X(R") is formed
by the unipotent matrices

el Ky oo X, 2 b
1 y1
= ((;),z) = (v,z)CR2n ®R
1 yn
L 1

with real elements [4]. Observe that A(R"™) is a connected,
simply connected, nilpotént Lie gréup of step two, i.e.,
the commutator of any two of its elements belongs to its
center Z. It is easily seen that Z may be characterized
by x1=...=xn=0=y1=...=yn. i.e., Z is isomorphic to the
additive group R. Moreover, it is not difficult to verify
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that K(Rn) is isomorphic to R2n ® R with respect to the
multiplication rule

ik
(vl’zl)'(v2’22) = (v1+v2,z1+z2+§B(v1,v2)).
Here B denotes the symplectic form
L al) n :
B: R° @ R 3(vy,v,) mee &x; ly,> —{x,lyd.

In particular, the real symplectic group Sp(n,R) forms
a subgroup of the automorphism group of A(R"™).

Let us recall from Kirillov theory that for all
N€R,™# 0, the map U, of A(R") defined by

L 1
b RS R A P L R

with tclfa Aty cq(Rn), is an unitary continuous irreducible
linear representation of A(R™) in the complex Hilbert

space L? (R™) which admits the Schwartz-Bruhat space

g(Rn) as its space of smooth vectors. Furthermore, every
unitary irreducible representation (of dimension >1)

of A(R™) is unitarily isomorphic to U. , for some specific
value ™MeR with ™ 4 0. In the case ™= 1, we obtain the
Schrodinger representation U = U1 of K(Rn) as a prototype

of an infinite dimensional unitary continuous irreducible
linear representation of X(Rn). Let us denote its coefficient
function by CU' Then we have by standard results of nilpotent
harmonic analysis (cf. [2]):

Theorem 1. For any envelope f € g(Rn) the radar ambiguity
function with respect to f satisfies the identity

H(Tx,y) = ey(£35(3).0)
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for all arrival times xcRr1 and frequency shifts yeRn.
In particular, the mapping (x,y)~eH(f;x,y) is a mod Z
square-integrable function of positive type on the real
Heisenberg nilpotent group xR .

Let us mention two consequences of Theorem 1 supra
which follow from well-known properties of functions of

positive type.

Corollary. The radar ambiguity function H(f;.,.) satis-

fies

(i) (x'y)seuan qI)HI(‘g;x,y)l = H(£;0,0) = RE Q47 =:1
and

(ii) S s [H{E;x,y) |2dxdy = 8£0° =11

R" R"
for all fey(Rn) having L?-norm B£ll = 1.

By property (i) the radar ambiguity function H(f;.,.)
takes on its peak value at the origin, i.e., the ambiguity
surface is peaked at the point (O,O)e:Rn ® R". From property
(ii) a geometric statement of the radar uncertainty principle
can be deduced: The volume of the "ambiguity body" is
an invariant that does not depend on the specific signal
form. The overall uncertainty of the range and range rate
measurements is preserved; by changing the signal form,
it is possible to change the accuracy of the range and
range rate measurement merely in such a manner that a
gain for one of the parameters leads to a loss for the
other one.
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Theorem 1 supra implies an important symmetry property
of the radar ambiguity function H. Indeed, the mapping

. ((;),z) e ((_z).z)

defines an automorphism of K(Rn) which leaves the center

Z pointwise fixed. Therefore, by the Stone-von NeumaanSegal
theorem, U and U® = Uet are isomorphic mod Z square-integrable
irreducible unitary linear representations of K&Bn). It

is easy to verify that the Fourier cotransform Srn defines
; R
a unitary isomorphy of U onto Ut, i.e., that the intertwining

identity

? ol = Ut.f
R" R"

holds. Thus we have established

Theorem 2. Let fe¥(R") have L?-norm J£] = 1. Then the
identity

H{fsx,v) = H(iinf;y,—x)

holds for all pairs (x,y)e R" © R".

It is quite natural to ask whether the radar ambiguity
function H(f;.,.) determines uniquely the envelope f €
_?(R") of. L?-norm [ £]] = 1. However, the following more
general problem reveals itself to be more important in
radar synthesis; Given the radar ambiguity surface H(f;Rn,Rn)
of a standardized function fc!'(Rn), determine its linear
energy preserving invariants, i.e., the energy preserving
linear mappings that transform H(f;Rn,Rn) onto itself.

The following theorem solves this problem and includes
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the uniqueness result as a special result.

Theorem 3. Let the functions feq(Rn) and f'e!'(Rn) be
given. Suppose ||fll = Jf']] = 1 and that there exists for
any pair of vectors (x,y)€ R” ® R” a pair (x',y') €

R"” ® R" such that

HIE; x, ) = HiL g xt ydy,

Then there are a unitary operator T of L? (Rn) which is
unique up to a multiple by the scalar operator Zisz(Rn),
where Z_,e T, and a (unique) symplectic linear mapping u €
Sp(n,R) such that the identities

fi=T(rr), (x,y) =ual(x y")

hold.

Proof. Let U(L?(R™)) denote the unitary group of the
complex Hilbert space L? (R™) equipped with the strong
topology. In view of Theorem 1 supra we have to determine

the closed subgroup M of u(L? (R™)) consisting of all elements
TeU(L? (R")) such that for each vector v =(;) e R" o R"

there exists a vector v' =(;:) e R" o R" so that the identity

Teo U(v,z)e i U(v',z)

holds for all zegR. We know that ?n € M. Obviously v' e :
R2n depends on veR2n and on the elfement TEM. Let v'=
u(T)(v). Then u(T): R iee g defines a homeomorphism.
Recall that the symplectic group Sp(n,R) of the phase

space R” o R" forms a subgroup of the automorphism group

of A(R™) and that the metaplectic group Mp(n,R) is a double
covering group of Sp(n,R). It is easily checked that u(T) €
Sp(n,R) for all Te€ M. Moreover, u: M —Sp(n,R) is a Lie

group homomorphism which extends the covering homomorphism
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J in the short exact sequence °

{0} —=(2/22)id ———= Mp(n,R)—J+Sp(n,R)—={1}.
LS (B™)

Since the corresponding short exact sequence for u admits
the form

u

{1} — Tid M

S( !R) 1 ?
Yeren p(n,R)—— {1}

the result follows.-

The uﬁitary operator T can be computed explicitly
by means of polarizations. In particular, the preceding
theorem reveals the symplectic invariance of the radar
ambiguity surface. - Let us now consider the case n=1
in some more detail. Obviously

Sp(1,R) = SL(2,R)

and we obtain (cf. [3]):

‘Theorem 4. The radar ambiguity surface H(f;R,R) with

respect to the envelope fHeq(R) with norm £}l = 1 is SO(2,R)-
invariant if and only if there exists a phase factor,

i.e., a number Ze € of modulus IZI = 1, and a Hermite-Weber

function wm of degree m 2 0 such that

£=gwW
holds.

The figures displayed below show the radar ambiguity
surface with respect to the envelope f = wm (which can
be expressed in terms of the Laguerre-Weber function of
degree m) in the casem = 1,...,4.




