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PrREFACE

The present book represents a definitive statement of the results obtained by
the late Mr. R. E. A. C. Paley and myself during Mr. Paley’s year as Rockefeller
Fellow at the Massachusetts Institute of Technology (1932-1933). Mr. Paley
was killed on April 7 in a skiing accident in the Canadian Rockies, during a short
vacation which he had taken from our joint work. I have written elsewhere of
the great loss to mathematics by his death; here let me only state the condition
in which our joint work was left. Our method of collaboration had been most
informal. We had worked together with a blackboard before us, and when we
had covered it with our joint comments, one or the other would copy down what
was relevant, and reduce it to a preliminary written form. Most of our work
went through several versions, in writing which both authors took part. Even
in that part of the research committed to writing since Mr. Paley’s death, it is
completely impossible to determine how much is new and how much is a reminis-
cence of our many conversations.

A part of our work was published in the form of a series of notes in the Trans-
actions of the American Mathematical Society. This work covered a great
variety of topies, but was unified by the central idea of the application of the -
Fourier transform in the complex domain. I had long been convinced of the
importance of the Fourier-Mellin transforms as a tool in analysis. Their intro-
duction is of course no novelty, but I know of no systematic development of their
methodical use. Perhaps the nearest approach to such a development is to be
found in the researches of H. Bohr, Jessen and Besicovitch on almost periodic
functions in the complex domain. However, nobody seems to have realized
anything like the scope of the method. With its aid, we were able to attack such
diverse analytic questions as those of quasi-analytic functions, of Mercer’s
theorem on summability, of Milne’s integral equation of radiative equilibrium,
of the theorems of Miinz and Szdsz concerning the closure of sets of powers of
an argument, of Titchmarsh’s theory of entire functions of semi-exponential type
with real negative zeros, of trigonometric interpolation and developments in
polynomials of the form
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of lacunary series, of generalized harmonic analysis in the complex domain, of the
zeros of random functions, and many others. We came to believe that an ana-
lytic method of such scope is entitled to an independent treatise.

The American Mathematical Society has done me the honor of requesting me
to deliver the Williamstown Colloquium Leetures for 1934. While such lectures
have not previously been an account of collaborative work, my best available
work has been collaborative, and I have offered it for the lectures in question.
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INTRODUCTION

1. Plancherel's Theorem. In a book such as the present, unified rather
by the repeated use of a number of methods than by a great homogeneity of
content, it is quite necessary to start with a brief account of the background of
scientifie knowledge presupposed and a tabulation of the prini¢ipal methods.
The background of knowledge presupposed in the greater part of this treatise is
roughly that covered in Titchmarsh’s very useful Theory oj Functwns The
tools most used are the followiag:

(1) Integration by parts, and other similar inversions of ‘the order of an abso-
lutely convergent double integral;

" "(2) The “mutilation” of the function: that is, the re'pla.Cement of a function
by a function identical with the first over a finite range, and vamshmg outside
that range;

(3) The Schwarz inequality

aoy [ [@ewie]s [@rd [ b,

and similar inequalities for sums, series, etc.;
{4) The Weyl form of the Rlesz-Flscher theorem, to the effegt that if a
sequence of functions { f,.(:c)} of L, converges in the mean in the sense.

(1.02) lim | In(®) = fal@) [pdz = 0,
then there exists a function f(2) of L. to whlch the sequence converges in the
mean in the sense

L] s g }
(1.03) h:l;/ | fm(x) — f(2) 2dz = 0.

(5) The theorem that if a sequence of functions converges in the mean to one
limit, and converges in the ordinary sense to another, then these two limits
differ at most over a null set;

(6) Methods of summablhty and averaging, in particular theorems of Abelian
and Tauberian types:*

(7) Methods depending on the ‘Plancherel and. the Parseval theorems .con~
cerning Fourier transforms.t

* Ci. Wiener, The Fourier Integral and Certain of ité“}lppli‘cdtions, Cambridge, 1933,

The Tauberian theorems of this book are not to be found in the book of Titchmarsh.

t A good elementary study of such questions is to be found in 8. Bochner’s Vorlesungen
iber Fouriersche Integrale, Leipzig, 1982. The treatment in Wiener’s book (see abova) is
slightly more advanced.
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2 INTRODUCTION

Throughout this book we shall assume on the part of the reader familiarity
with the theory and use of the Lebesgue integral and with the appropriate
notations. In particular, we shall make repeated use of the notation L to
represent the class of measurable, absolutely integrable functions, and of the
notation L, for the class of those measurable functions, the pth power of whose
modulus is integrable. However, we shall have little to do with other classes
than L and Ls.

In the theory of the Fourier integral, the fundamental theorem for the class
L, is that of Plancherel. It reads as follows:

PrancuEREL'S THEOREM. Let f(x) belong to Le over (— », ). Then there
exists a function g(u) belonging to L; over (— =, =), and such thal

*x©

(1.04) tim [~ ) — (20 / " f(e) e | du = 0.
Furthermore B |

(105) [rswpa= |71,

and

(1.06) lim : f(@) — (@x)e /_ :g(u) vz dy izdx -1,

The function g(u) is called the Fourter Transform of f(x). It is determined excepl
over a set of points of zero measure.

In case "
(1.07) h(uw) = (27)‘1’2/ J(z) ev= da
exists, we have g(u) = h(u) almost everywhere.

An important corollary of Plancherel’s theorem is

Parseval’s TueoreM. Let fi(z) and f2(z) both belong to L,, and let them have
the Fourier tmnsforms.(gl(u) and g2(u), respectively. Then

(1.08) [_:gx(u) g2(u) du = -[_:fl(x) f2(-:¥) dz.
In particular,
(1.09) /_ : g1(u) ga(u) e du = f_ :fx(y') falz — y) dy.

Thus, if g1(u) g2(u) belongs to Lz as well as both its factors, it is the Fourier trans-
form of

(110) @i [~ 16) flz - ) d.

This will also be true whenever f1(z), f2(z), and (1.10) all belong to L.
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2. The Fourier transform of a function vanishing exponentially. Let us
suppose that f(z) is measurable, and of summable square over any finite
interval. Let

@.1) i@) = (0(6—”) {z— wl;
{4.1) x ‘0(0)‘2) {I__)—oo] ‘

In case — X < ¢ < u, the Fourier transforne of J(x) e°* will then be
{2.2) F(o,t) = (27r)12 [ f(z) etz dg,

However, this converges absolutely and uniformly over every range — A 4 ¢ <
¢ < u — e. Thus by a well known theorem from the theory of functions of a
complex variable,

(2.3) F(o + it) = F(s, 1)

will be an analytic function of ¢ 4 ¢ over the interior of the strip — A < ¢ < p.
Furthermore, over any strip — A 4+ ¢ < ¢ < u — e we shall have

f”m(a, 0 |2dt = f” £ P eter do
4 -

v . .
< const. / e~?= dz 4 const. / €** dx = const.
0

-3

We have thus proved

TrxoreM I.  If f(z) is measurable, of summable square over every finite interval,
and a function satisfying (2.1), for — \ < p, then (2.2) defines a funciion F (¢ + 1t)
analytic over the interior of the strip — N\ < ¢ < u; and over any inlerior sirip
— AN+ eSoSpu—¢[2]|F(e4 i) 2dt is bounded.

¢

3. The Fourier transform of a function in a strip. Let F(c + it) be a
function of the complex variable s = ¢ + 4, which is analytic in and on the
boundary of the strip — A £ ¢ < p, andilet : ,

(3.01) f | F(o 4 4t) |? dt < const. o [-As=es= ul.
Then by Cauchy’s theorem, if A is large enough and — A < ¢ < g,

—A—A3i n—Ai B+AL —A+4;i
(3.02) F(s) = [ f / " / + / ] F@ 4,
M-Ai A—di n—Ai ptai z—s

By a further integration, if B is large enough,

B+1 —A—Ag [ u—As ptds —A+4i
(3.03) F(s) = / dA [ / / n f + / ].’f@_ de.
27t /s —A+4i A—4i ey wtai Jz— S
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Now,
1 B+1 —X+A. F’(z) B41 F(z + At)
|§J; dAf“‘ = | 2+Az—sdA|
sl a f’ Fe+4ipaa [ —d4 L=
3.04 o) %, IFe+r APl | o

» B+l ) 1/2
gconst./ dc{f IF(¢+¢'¢)|’dt}
- B

By (3.01) it follows that

B4+1 ’ 1/2
‘ {[ |Flo 4 4t) |2 dt} < const.,
'y B
(3.05) "B+ 12
hm{/ IF(a+it)|=dt} = 0.
B~ B )
It is a familiar theorem in the theory of the Lebesgue integral, that if a sequence
of integrable functions converges boundedly to a limit, and the integral of that
limit exists, then the limit of the integral of a function of the sequence is the
integral of the limit. Thus

) —A+4i

(3.06) | Jim o / f F (’) ~ 0.
: 2“ +4i
'Simi'larly,
BH s—Ai
(3.07) tim oL f / F@) 4 - o0.
i ) B X x7 —A—4i 2 —' 8

Thus

Flu+iy) F(—\+ip))
dhen --~2r,[ /{n+ty—s:”—k'-l-"iy—81'dy

B F(u41y) Ep(- A + i)
= hm{Zr —nu+ty-—sdy 21r _B—)\-{—zy—-s

o £} B,
: +2:_/ (B41-= y)F("_*_w)dy

(3'08') “+‘y B+l
f (B41-y) F(— A+,
T X+ iy -3 g
P (B4+14y)Flu+ ) i
21|' —B—1 +1y—8

-8 (B+1+y)F( x+zy) }
2‘!' _.3.-1‘ ¥ —k+?"y—8 y

dy

B—o0

b —
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Now,
'_1_/3+‘(B+1—y)F(u+1y) ylS 1 {/”‘ B+1—yrdy
2x 41y —s “2r /s ln+iy—s
B+ if2
(3.09) XL | Fu + iy) I’dy}

B+1 i/2
< const. {/ FF(u + 1y) |2 dy}
B
It follows at once from (3 01) that
R ’+‘(B+1—y)F(u+ty)
1 1 s
WL Jim o, w+w—9 =0

A similar argument will enable us to elimjnate three more terms from (3.08),
and we get

1 [* Fu +iy) / F(=\ + 1)
@.1D) F()= Lu+zy—s Y~ o —A+zy—-8dy
This is a sufficiently important result to be numbered as a theorem. We have

TuaroreM I1.  Let F(s) be analytic over — X\ < o < p, and let (3.01) hold over
this region. Then if s is inderior to this regton, (3.11) is valid.

The use of the Schwarz inequality gives us

1 [* Fu+iy) i/‘” b e f" dy }m
ow |5 ot Zynlss{Lirerwra [t
or

TuroreMm III. Under the hypothesis of Theorem 11, F(s) is bounded over any
region — N+ eSS o = p— e

Let us put
. N 4 P
(3.13) flo, 2) = (2x)~2 Li.m. F(o 4 1) e = di.
—4

Let us also put .
(3.14) o(x) =0 [z < 0]; o(x) = e== [z > 0]; a > 0.
We shall have
(3.15) / o(z) ¢ dz = / ez gy = L —.

a— 1y

Plancherel’s theorem yields

ey 0 [z<0]
(3.16) llm——_“._w ={“‘"[z>0]lf > 0.
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Similarly, if « < 0,

n 1 [ e —eo= [x < 0]
(3.17) Lim. ——/ —dy = { 0 [z> 0]

Thus by the Parseval theorem, since — A + e <o < p — ¢

0 o x pitx ey 1 - F(—X + Zy)
(3.18) _“f(—x, ) eV gite iy = I f_,,{—x —o— G-y .

In exactly the same way,

1 ® Flu+ ) i
T2 | o —a— @ —y)e]

(3.19) f fu, z) Witz g =
0 (2

Thus by (3.11)

” 1 [° . 1 [
(320) F(s) = B /_ B} f(=N\, x) eetVzgitz dp 4 @ ‘/o Sy, x) elr—w)= git= dg,
Another use of Plancherel’s theorem gives us
F(=X, z) etV [—w <z <0
(3.21) flo, 2) =
S, x) el—w)= 0<z< =];
and consequently if for a particular o
(322 f@) = fla, )e™= , [-A<a<yl,
we get '
(3.23) f(o, 2) = f(z)e= [—A<o<ul

An immediate result is that

(3.24) tim [ [fe, %) — flos,2) [ dz = 0.

c,01—*u—0 J4

Moreover, if B is positive and 4 negative,

(3.25) [ " fo @) e = f "\ fuy2) I da,
and
(3.26) [iseares [(xnapa

As a consequence,

o

(3.27) lim 3 | flo,2) — flon, 2) 2 dx = 0.
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Thus by Wey}V’s lemma to the Riesz-Fischer theorem, there exists in L, a fune-
tion fi(z) such that

(3.28) lim "\ fe, 2) — ful@) |2 ds = 0.

By a Fourier transformation and the use of Plancherel’s theorem, there exists a
function Fy(t) such that

(3.29) lim | |Flo + i) — Fa(t) Pt = 0.

o—=p—0 J—

However, we already know that

(3.30) lim F(o + it) = F(u 4 1),
. c—=pu—0
and hence, ’
(3.31) lim lF(a +it) — Flu4 i) 2dt =0.
e—u—~—0 J—e

By a further Fourier transforma.tlon,

(3.32) lim lf(cr, x) — f(u, z) | dz = 0.
e—u—0
Similarly,
(3.33) ’ lim | flo, ) — f(—=N\, 2) |Pdz = 0.
g——A+0 J—oo
However, ‘
(3.34) lim f(g, 2) = (=}, &) ew+ds [—w <z <0,
a—p
and
(3.35) lim f(o, z) = flu, ) V= [0<2z< el
e LY
Thus with the possible exception of a null set,
(336)  flo, ) = f(u, 2)e 7 = f(= N, gjelH= = o <z < w].
This yields us

TreoreM IV. Under the hypotheses of Theorem I, there exisis a measurable
Junction f(z), such that

(3.37) f | flz) |2 er* dz < oo, ' / | flz) PePede < o,
and that over the closed interval — \ £ ¢ = u,

(3.38) F(o + it) = Lim. (2r)72 _A f(x) exte+iv> da,

Ao
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It follows from Theorems I and IV that the extreme boundaries of the interval
over which F(c¢ 4 #) belongs uniformly to L. as a funection of ¢ are given by the
boundaries of convergence of the integral

f_ : | 1) | et d.

4. The Fourier transform of a function in a half-plane. In particular,
F(o + it) will belong to L; in every ordinate of a right half-plane when and
only when

(4.01) /_” [ (@) 2 e dz < o

for all sufficiently large ¢, and will belong to L; uniformly in such a half-plane
when and only when

(4.02) lim | f(z) Permdx < .
This latter contingency can only occur when f(z) vanishes almost evervwhere for

positive values of its argument. Otherwise there will be some interval (a, b)
[6 > a > 0] over which

b
(4.03) f | f) Pdx=1>0.
We shall then have

(4.00 [ 15 pomdn z o1,

which is contrary to our assumption.
Conversely, if f(z) vanishes for positive values of its argument, and if, for
some A,

(4.05) [ i@ peris< =,

S

the function # (o + it) defined by (3.38) will belong uniformly to L; as a function
of tfore 2 — A. In particular, we have

TraeOREM V. The two following classes of analytic functions are identical:
(1) the class of all functions F(o 4+ it) analytic for ¢ > 0, and such that

(4.06) / [ F(¢ 4 1t) |2 dt < const. 0D<o< =];

—a0

(2) the class of all functions defined by

0
(4.07) Flo + it) = Lim, 20)"12 [ f(z) e+ de,
A—0

—A

where f(z) belongs to Ly over (— =, 0).
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We shall have

(4.08) Lim. F(o + i) = Lim. (2x)"2 /o J(@) ei*= dz.

e—0 A—0

5. Theorems of the Phragmén-Lindeltf type. Let us again consider functions
F(o + 1), analytic over — A £ 0 < p. Let us assume that

(5.01) [”|F(_x+u) Rt < o, /”w(# L)< w,
and thaf,
(5.02) |Flo +it)| < M [-ASo=4.

In place of (3.04) we shall have for sufficiently large B

_1- /{a-ﬂ id /—x+u F(z) /‘ / MdA
2#1.3 Ju+a4i Z--S _21!' +A—8I

2 Mup+N 1

- 2r B —t’
so that (3.08) is established as before. Thus (3.11) is validy, and the whole
argument up to (3.21) is repeated unchanged. The sole difference is that the
argument this time is so turned as to prove that F(s + it) is the Fourier trans-
form of a function f(s, 2) belonging to L., instead of initially assuming it, or the
equivalent fact that F (s - 4) belongs uniformly to L.

It results immediately from (3.21) that f(s, t) belongs uniformly to L. over

(= A, u), and hence that F(¢ + it) belongs uniformly to L. over this interval.
We have thus proved

TureoreM VI. If (5.01) and (5.02) are satisfied, the hypotheses and hence the
conclusions of Theorems 11, 111, and IV are valid.

(5.03)

We now appeal to the classical theorem of Phragmén and Lindelof.* This
asserts that if F(c 4 ) is analytic for — X\ = ¢ = p, if

(5.04) F(o + i) = O(e*") o < w41,

and if F(— X + 1) and F(u + t) are bounded, then F(o + 1t) is bounded for all
t and for — A £ ¢ £ u. Without any assumption further than that F(s) be-
longs to L, for the ordinates at — A and g, it will then follow that if F(s) is
analytic up to and including these ordinates and in the strip between them, and
if (5.04) is fulfilled, the analytic function

1 e 1 o+ittie
(5.05) Flo + i) = -e--/ Flo 4 i7) dr = -2—6-/‘ F(s) ds
¢ 4

+it

* B, C. Titchmarsh, Theory of Functions, p. 178 ff.
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will be bounded and will satisfy (5.04), and hence by the argument with which
we have proved Theorem VI,

600 [ IR+ ke <f P+ pdst [Pt ba
[-As0 § ul.
However, it is a well known theorem that if ¢(x) belongs to Lo,
z+e
(5.07) L i.x:x.% o(®) dt = ¢(2).

Moreover, we have

[’1F(«+u) pat=tim ["1F o) et

(5.08) . .

s [Ciratirat [[1Fas b ra,
and hence
(5.09) :| F(o 4 4t) 2dt < coﬁst. [-AS oS4l
This yields us

Tugorem VIL. If F(s) is analytic over — A\ < o < g, if (5.01) s satisfied, and
if (5.04) s satzsfied, the conclusions of Theorems 11, 111 and IV are valid.

We now turn our attention from the strip to the half-plane. Let F(s) be
analytic for ¢ 2 0, let

(5.10) | f | Fit) Pdt < oo,
and let

(5.11) | F(o + 1t) | = const. [0=¢< =]

As before, we have

(5.12) F(s) = lim o L "t /_ :{F(#ji-iy) F(zy)} .

B p+wy—s wy—3s8

prévided u is large enough. This may be written

Flu+y) , F(ty)
(5.13) F(s) = y—mz"r./‘ d4 ,/:A w4y - s 21!' o 1Y — 3

by the argument of (3.10) and (3.11). Now if u is large enough, and
R(s) >0



