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PREFACE

In the early days of modern control theory, the techniques developed were
relatively simple but, nevertheless, quite effective for the relatively simple sys-
tems applications of those times. Basically, the techniques were frequency do-
main analysis and synthesis techniques. Then, toward the latter part of the 1950s,
system state space techniques began to emerge. In parallel with these develop-
ments, computer technology was evolving.These two parallel developments (i.e.,
increasingly effective system analysis and synthesis techniques and increasingly
powerful computer technology) have resulted in a requisite powerful capability
to deal with the increasingly complex systems of today’s world.

In these modern day systems of various levels of complexity, the need to
deal with a wider variety of situations, including significant parameter varia-
tions, modeling large scale systems with models of lower dimension, fault toler-
ance, and a rather wide variety of other problems, has resulted in a need for
increasingly powerful techniques, that is, system robustness techniques, for deal-
ing with these issues. As a result, this is a particularly appropriate time to treat
the issue of robust system techniques in this international series. Thus, this vol-
ume is the first volume of a two-volume sequence devoted to the most timely
theme of “Robust Control Systems Techniques.”

The first contribution to this volume is “Trade-offs Among Conflicting
Objectives in Robust Control Design,” by Brian D. O. Anderson, Wei-Yong Yan,
and Robert Bitmead. This contribution presents important techniques for deal-
ing with conflicting design objectives in control systems.

The next contribution is “Aspects of Robust Control Systems Design,” by
Rafael T. Yanushevsky. It provides an in-depth treatment of robustness tech-
niques of systems described by differential-difference equations, and it also pre-
sents methods for the design of a wide class of robust nonlinear systems.

The next contribution is “System Observer Techniques in Robust Control
Systems Design Synthesis,” by Tsuyoski Okada, Masahiko Kihara, Masakazu
Ikeda, and Toshihiro Honma. This contribution discusses techniques for dealing
with the problems resulting from the use of observers in robust systems design,
and it offers three distinct design techniques for treating these problems.
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The next contribution is “Robust Tracking Control of Non-Linear Systems
with Uncertain Dynamics,” by Dauchang Wang and Cornelius T. Leondes. It
presents rather effective techniques for the robust control on non-linear time vary-
ing of tracking control systems with uncertainties.

The next contribution is “Adaptive Robust Control of Uncertain Systems,”
by Y. H. Chen and J. S. Chen. This article sets forth techniques for incorporating
adaptive control techniques into a (non-adaptive) robust control design.

The next contribution is “Robustness Techniques in Nonlinear Systems with
Applications to Manipulator Adaptor Control,” by Nader Sadegh. It presents tech-
niques for achieving exponential and robust stability for a rather general class of
nonlinear systems.

The next contribution is “Techniques in Modeling Uncertain Dynamics for
Robust Control Systems Design,” by Altug Iftar and Umit Ozgiiner. This contri-
bution discusses a unified framework for robust control systems design for sys-
tems with both parameter uncertainties and uncertain dynamics due to the diffi-
culties in modeling complex systems.

The next contribution is “Neoclassical Control Theory: A Functional Analy-
sis Approach to Optimal Frequency Domain Controller Synthesis,” by A. M.
Holohan and M. G. Safonov. It offers techniques for the optimal synthesis (opti-
mal in the sense defined in this contribution) of robust control systems.

The next contribution is “A Generalized Eigenproblem Solution for Singu-
lar H? and H- Problems,” by B. R. Copeland and M. G. Safonov. It presents
techniques for the design of H> and H* which apply equally well to both singular
and nonsingular system cases.

The final contribution to this first volume of this two-volume sequence on
the theme of “Robust Control System Techniques™ is “Techniques in Stability
Robustness Bounds for Linear Discrete-Time Systems,” by James B. Farison
and Sri R. Kollaq. This contribution provides a unified treatment of stability
robustness design for discrete-time systems.

This volume is a particularly appropriate one as the first of a companion set
of two volumes on robust control system analysis and synthesis techniques. The
authors are all to be commended for their superb contributions, which will pro-
vide a significant reference source for workers on the international scene for
years to come.



CONTENTS

EXTENDED CONTENTS  .....cccoemmuinminruerrntnsnesesessesnssessesssssssssssssessssssnses vii
CONTRIBUTORS ........uiieemencneensinsasssssesssssssssssessmssssssssssssnssssesesasens ix
PREFACE ...ttt sesssesssssssssass s s ssessasssss s sasssssssensesssens Xi

Trade-offs among Conflicting Objectives in Robust
Control DESITN. ocssssmssmsmsssssisnisssisssamsmsasenessersensssensssensoemess s srrseassrs 1

Brian D. O. Anderson, Wei-Yong Yan, and Robert R. Bitmead

Aspects of Robust Control Systems DESigN ......ceveveeeereeeemeeeeoeooeooson 55
Rafael T. Yanushevsky

System Observer Techniques in Robust Control Systems
DeSIgN SYNLNESIS .....cocueiuirertietceececee e ceeeeeeeeeceeeeseesses e 79

Tsuyoshi Okada, Masahiko Kihara, Masakazu Ikeda, and
Toshihiro Honma

Robust Tracking Control of Non-linear Systems with
Uncertain DYNAMICS  .....c.ocuvuruerueeueconceeceeeee e eeeeseseeseesesses oo 119

Dauchung Wang and C. T. Leondes

Adaptive Robust Control of Uncertain SYStems ...............oovoooooevooooooon, 175
Y.H. ChenandJ.S. Chen

Robustness Techniques in Nonlinear Systems with Applications
to Manipulator Adaptive CONLIOl ............ceeeeeeeeeeesroeseesreeeeooeosooooooooen 223

Nader Sadegh



vi CONTENTS

Techniques in Modeling Uncertain Dynamics for Robust

Control SStem DESIZN .....c.cceeirveresenrereeinrerieseesessesesseseessssessessssssesssssesesens 255
Altug Iftar and Umit Ozgiiner

Neoclassical Control Theory: A Functional Analysis Approach
to Optimal Frequency Domain Controller Synthesis ..........ccccoeeeuerervnnenne 297

A.M. Holohan and M. G. Safonov

A Generalized Eigenproblem Solution for Singular /2 and
H7 PrODIEIMS .....ovniininicncnenenirneceetesseeststsaesesese e sesesessssssssssasasssosesssesensanes 331

B.R. Copeland and M. G. Safonov

Techniques in Stability Robustness Bounds for Linear
DisCrete-Time SYSIEMS ...uoveveveereeneeerieeecersiieseseeeeeseseseseeesssssssssssssssssesssens 395

James B. Farison and Sri R. Kolla



Trade-offs among

Conflicting Objectives in
Robust Control Design

Brian D. O. Anderson
Wei-Yong Yan
Robert R. Bitmead

Department of Systems Engineering

Research School of Physical Sciences and Engineering
The Australian National University

Canberra, ACT 2601, Australia

I. Introduction

Consider the feedback control system depicted in Figure 1.

v
+
s o %ll .

C(s) =)t

Figure 1. Feedback control system.

Here P is the plant system concerned, C is the controller and the sig-
nal r, y, u, v and n are the reference, system output, control input, output
disturbance and sensor noise respectively. Classical control systems de-
sign emphasizes the securing of a number of conflicting objectives for this
feedback system such as;

e securing closed loop stability from each external input to the loop
signals w and y. (We refer to a controller C(s) achieving this as
[internally] stabilizing the plant P(s).)

CONTROL AND DYNAMIC SYSTEMS, VOL. 50
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e securing the rejection of disturbance signals v and n from y. This is
reflected by the properties of the closed loop sensitivity and comple-
mentary sensitivity functions.

e securing robustness to plant modeling errors and plant variations.
Depending upon the nature of plant uncertainty, this objective may
appear in terms of gain margins, phase margins or sensitivity func-
tions.

A classical controller synthesis aims to achieve all these ends but usually
proceeds by focusing on a single objective and then de-tunes or compro-
mises to effect the trade-off between these sometimes conflicting desires.
Alternatively, one may optimize with respect to one design issue and then
select, from the class of available solutions, that controller which best meets
one of the other objectives [1]. Of critical importance in such approaches
is to know to what extent each of these individual design criteria are con-
flicting in their demands of the controller. Further, it is advantageous to
know whether successive optimization of objective functions is feasible and,
if so, in what order. Lastly, one may pose the question of the ability to
ameliorate these conflicts through the choice of a time-varying or nonlinear
controller.

In this chapter, we study the trade-offs between a number of these
design objectives firstly for the class of linear, time invariant controller.
We use a tool introduced in [2] for this purpose. This tool deals with
the construction of functions of a complex variable which fulfill certain
interpolation and analyticity conditions arising from stability requirements
and design objectives. The specific problems treated are:

e the combined sensitivity-gain margin problem
e the combined sensitivity-phase margin problem
e the combined sensitivity-complementary sensitivity problem

Having made apparent some of the compromises available to the designer
with time invariant linear controllers, we then move on to study the benefits
achievable in reducing some of this conflict by using a periodically time
varying controller. Our analysis treats the single-input/single-output case
but, where extension to the multi-input/multi-output case is direct, this is
noted.
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II. The Optimal Sensitivity and Gain
Margin Problem as Separate Problems

The material of this section is largely drawn from [2], and serves as a
tutorial introduction to the main ideas of the chapter. Let P(s) be a scalar
linear time-invariant plant with poles p;, ..., p, € Re[s] > 0 and zeros
z1, ..., zn (including possibly infinity) € Re[s] > 0. Consider a stable
closed-loop as depicted in Figure 1.

A. Optimal Sensitivity and Gain Margin
The sensitivity function S(s) is defined by

S(s) = [1+ P(s)C(s)] ™" (1)
and the sensitivity is defined by
R[C(s)] = [IS(s)llo = sup  [S(s)| = sup |S(jw)| (2)
seRe[s]>0 w

The last equality in Eq. (2) follows from the maximum modulus principle;
closed-loop stability ensures that S(s) is analytic in Re[s] > 0.

The sensitivity R[C(s)] of course depends on C(s). Its minimization
through choice of C(s) serves to secure a design which minimizes the max-
imum (over w) of the gain from a disturbance entering at the plant output
to the actual output.

A natural question is: what is

A ér(lf){R[C(s)] : C(s) stabilizes P(s)} 3)

(and what is the associated C(s); and how may it be found)?
With a fixed controller C(s), the upper and lower gain margins by ax
and apnj, are defined by

bmax = sup{b: C(s) stabilizes kP(s) Vk € [1, ]} (4)
amin = inf{a: C(s) stabilizes kP(s) Vk € [a, 1]} (5)
Of course, it is possible to have bmax = 00 or @min = 0 (or both), but

not if the sets {z;} or {p;} are nonempty. We shall define the gain margin
as
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K[C(s)] = sup{b/a: O0<a<l<b and C(s) stabilizes
kP(s) Vk € [a,b]} (6a)

_ bmax (Gb)

Qmin

Evidently, K can be infinite for certain plants. Note that the gain margin
K is the same for P(s) and aP(s), for any a > 0, so long as C(s) stabilizes
aP(s).

A natural question is: what is

kmax =sup{K[C(s)]: C(s) stabilizes P(s)}? (7

We shall now review how these questions can be answered. There are
two key relevant ideas, one tied to interpolation properties of S(s) and the
other tied to mapping properties. The overall thrust is to work with S(s)
rather than C(s); once S(s) is known, C(s) of course follows easily.

B. Interpolation Properties of S(s)

Recall that p; is a pole in Re[s] > 0 of P(s). Because C(s) is stabilizing,
C(pi) = 0 is impossible. Hence S(p;) = 0. Recall also that z; is a zero in
Re[s] > 0 of P(s). Again because C(s) is stabilizing, z; cannot be a pole
of C(s). Hence S(z;) = 1. Thus we have

S(pi) = 0 Vp; €Re(s) >0, p; a pole of P(s) (8)
S(z;) = 1 Vz € Re(s) >0, z; a zero of P(s) (9)
For convenience, we shall assume poles and zeros in Re(s) > 0 of P(s) are

simple. The theory can be extended to cope with multiple poles and Z€ros,
but is more complex.

C. Mapping Properties of S(s)
Suppose C(s) achieves a sensitivity of r. Let H denote Re[s] > 0. Then,
clearly

S(s): H—Gi={seC: |s|<r} (10)

Also, suppose C(s) achieves a gain margin pair of a,b. Then for all
k € [a,b], we have Vs € H,

1+kP(s)C(s) # 0
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or
P(s)C(s) # —1/k, Vsed
S(s) = [1+ P(s)C(s)]"" # kL_l Vse i
or

S(s): H =Gy 2¢\ {(—oo, —1%‘(1] u [ﬁ oo)} (11)

Evidently, if a sensitivity of = is achieved, S(s) satisfies the interpolation
conditions (8)-(9), and the mapping condition (10), while if a gain margin
pair a,b is achieved, it again satisfies the interpolation conditions (8)-(9),
but now the mapping condition (11).

Importantly, and conversely, if we can find an S(s) satisfying the inter-
polation conditions and a mapping condition, we can then construct C(s)
from S(s) to achieve a controller of the desired properties, i.e. one which
yields a sensitivity of r or a gain margin pair of a,b. The quantities rmi,
and kmax are characterized by finding the infimum of the r and supremum
of the ratio b/a such that S(s) exists.

To examine the question of simultaneous satisfaction of mapping and
interpolation conditions, we shall first look at a special case.

D. Nevanlinna-Pick Theory

The Nevanlinna-Pick theory is concerned with the existence and construc-
tion of a function F(z) mapping the closed unit disk D = {|z| < 1} into

the open unit disk D = {|z| < 1}. Let 3, ..., Bp satisfy |B;| < 1 and let
Y1, .-, Yp satisfy |y;| < 1. If §; = B, then v; = 7f. Ask the question:
does there exist

F: D—D (12)
such that

Suppose first of all that all §; are in D, so that [B;| < 1. Then the simple
answer is that F' exists if and only if the following p X p matrix is positive
definite:

1 — 7%
['=(Tij)pxp, Tij= W (14)
iPj

A variant on the Nevanlinna-Pick problem is to seek

Omax = sup{y >0: 3 F: D — D for which F(B;) = yvi}



