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PREFACE .

Since the theory of .continuous groups of transformations was inaugu-
rated by 'S. Lie and F. Engel; the groups. of motions in Riemannian
spaces were studied by L. Bianchi, G. Fubini, W. Killing, G. Ricci
" and- others. -

On. the other hand the 1dea of spaces with a linear connexion was
introduced by E. Cartan, J. A. Schouten and H: Weyl and the affine
and projective motions. in these spaces were first considered by L. P
Eisenhart and M. S. Knebelman.

In 1931, W. Slebodzinski introduced a new differential operator,
later called by D. van Dantzig that of Lie derivation, which can be
applied to scalars, vectors, tensors and affine connexions and which
proved to be a powerful instrument in the study of groups of auto-
morphisms. Using this operator, D. van Dantzig showed that his #-
dimensional projective space described by # - 1 homogeneous curvi-
linear . coordinates can be regarded as an (n 4 1)-dimensional space
with a linear connexion which admits a one-parameter group of affine
motions. He applied also the idea of Lie derivation to physics.

Since then the deformations of curves, subspaces and spaces themselves
as well as groups of motions, affine motions, projective motions and
. conformal motions were extensively studied by L. Berwald, E. Cartan,
N. Coburn, E. T. Davies, P. Dienes, A. Duschek, L. P. Eisenhart, F. A.
Ficken, H. A. Hayden, V. Hlavaty, E. R. van Kampen, M. S. Knebel- -
man, T. Levi-Civita, J. Levine, W. Mayer, A. J. McConnel, A. D. Michal,
H. P. Robertson, S. Sasaki, J. A. Schouten, J. L. Synge, A. H. Taub,
H. C. Wang, the present author and others.

The Lie derivatives of general geometric objects were studied by A
Nijenhuis, Y. Tashiro and the present author. : ‘
It is now a well-known fact that, if an »#-dimensional space admits
a group of motions, affine motions, projective motions or conformal
motions of the maximum order }n(n+1), n2+n, n2+2n or tn+1)(n+2)
respectively, the space is of constant curvature, affinely flat, projectively
Euclidean or conformally Euclidean. '

In 1947, 1. P. Egorov began the study of spaces which have a non-
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vanishing curvature tensor and which admit a group of automorphisms
of the maximum order. Investigations in this direction were carried out
by Y. Mutd, G. Vranceanu, H. C. Wang and the present author.

Chapters I—VII of the present book are devoted to the above-
mentioned publications.

The automorphisms in Finsler spaces, Cartan spaces, general affine
and projective spaces of geodesics and general affine and projective
spaces of k-spreads were studied also very extensively by the use of
Lie derivatives by R. S. Clark, E. T. Davies, H. Hiramatu, Y. Katsu-
rada, M. S. Knebelman, D. D. Kosambi, B. Laptev, Gy. Soés, B. Su,
K. Takano, H. C. Wang, the present author and others. Chapter VIII
contains the theory of Lie derivatives and its applications in these spaces.

Chapter IX is devoted to the study of global properties of the groups
of motions in a compact orientable Riemannian space. The method
used in this Chapter is due to S. Bochner and A. Lichnerowicz.

The last Chapter is devoted to a brief exposition on the almost complex
spaces and to some problems which can be dealt with by the use of Lie
derivatives.

There is a tendency of developing the theory of Lie derivatives from
the point of view of the theory of fibre bundles. But such an investigation
has just been started and it seems to the author that it is still premature
to give an exposition of the results already obtained. We only refer to
the recent papers by R. S. Palais, N. H. Kuiper and the present author.

The bibliography at the end of the book contains only the papers
and books quoted in the text and those of which the author may suppose
that they are of interest for the readers.

The author wishes to express here his hearty thanks to Prof. J. A.
Schouten who read the manuscript and gave many valuable suggestions.
The author wishes to thank also the editors of Bibliotheca Mathematica,
Prof. D. van Dantzig, Prof. J. de Groot and Prof. N. G. de Bruijn for
their most agreeable collaboration.

The author appreciates very much the kind help from his Dutch
friends. at the Mathematical Centre and the University of Amsterdam.
Miss P. Brouwer looked through the manuscript and improved the
English of the text. The author’s sincere thanks go to all of them.

Amsterdam, April 14, 1955 KENTARO YANO
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CHAPTER 1
INTRODUCTION

§ 1. Motions in a Riemannian space.

Consider an #z-dimensional Riemannian space ¥, ! of class C®?
covered by a set of neighbourhoods with coordinates £ and endowed
with the fundamental quadratic differential form

(L.1) dst = g, (E)dENdE" 2 ¢

where the Greek indices %, 2, @, v, ... run over the range 1, 2, ..., #.
We write (x) to denote the system of coordinates &
In the V, referred to (x), we consider a point transformation

(1.2) T: '8 = f();  Det (3f) #0

of class C®® which establishes a one-to-one correspondence between the
points of a region R and those of some other region 'R, where &, stands
for the partial derivation 9/0&*.

During this point transformation, a point & in R is carried to a point
' in ‘R and a point & + 4&¢ in R to a point ‘& + d’€* in 'R.

1 In principle, we follow, throughout the book, the standard notations which
appear in the recent book by ScuouTeN [8]. The number in parentheses refers to
the Bibliography at the end of the book.

2 A function is said to be of class CT in.some region if it is continuous and has
continuous derivatives with respect to the coordinates up to the order » at each
point of the region, and it is said to be of class C® if it is analytic. A space is said
to be of class C™ (C®) if it can be covered by a set of coordinate neighbourhoods
in such a way that the transformation of coordinates in an overlapping domain is
represented by functions of class C™ (C®) in that domain.

® We adopt the summation convention: If an index appears twice in a term once
as a subscript and once as superscript, summation has to be effected on the range
of the index.

4 The g;,,(£) means the value of g;, at the point § whose coordinates with respect
to (x) are &% The f*(&¥) in (1.2) denotes % functions of coordinates &Y.

5 A point transformation is said to be of class C™ (C?) if the functions defining
it are of class C" (C%).



2 INTRODUCTION ' CH. 1

If the distance d's between two displaced points ‘é* and ‘& 4 d'£*
is always equal to the distance between the two original points & and
& + d§*, the point transformation (1.2) is called a.motion® or an iso-
metry in the V. :

Now in order to formulate the condltlon for (1.2) to be a motion in a
V,, we proceed as follows:

The point transformation T carries a point §*in Rtoa pom; '&in 'R
and consequently the point transformation T-! inverse to T carries
the point ‘& in ‘R to the point & in R. With this inverse point trans-
formation 7-1:'é — &, we can associate a coordinate transformation
{x) — (x') such that the transform in R of a point in ‘R by T-! has the
same coordinates with respect to (x’) as the original point in ‘R had
with respect to (x)..This coordinate transformation is given by the
equation '

{1.3) ~ B =g
that is
(1.4) & = ).

This process (x) — (x") is called the dragging along of the coordinate
system (x) by the point transformation T-': ‘4 — £ and (x) is called
the coordinate system dragged along by T-1.

By this dragging along of (x) the d'¢* at ‘& becomes d§* at & and
we have

(1.5) A=A
Now the distance d’s between '&* and '&* - d'¢* is given by
(1.6) d's? = g, (€)d'e" d'¢"

and the distance ds between £ and & + dé&* is given by (1.1). But in
the coordinate system .(x'), (1.1) can be written as '

(1.7) ds = g, (6)de" d&”
where

(1.8) gxx(é) = A% &l *.

1 Following this deﬁmtlon the reﬂexxon is a motion.

2 Cf. ScHOUTEN (8], p. 102. This is written more elabora.tely o = 8" g% where
3% is the general Kronecker delta. In all cases-where no ambiguity can arise, we
drop the symbol 8% for the sake of shortness.

SAly defAAAx andA“def'a Ex A def@&”‘

w = Sy’ X — R
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- Thus comparing (1.6) with (1.7) and taking account of (1.5), we have

(1.9) &nul'8) = B8
for a motion in the V.

Now the field g, (£) is given at each point E of the space and conse-
quently we have the field g, ('€) at ‘4 in 'R. Starting from this field
g ('€) at ‘&, we form a new field ‘g, (&) at & in R in the following way:

We define a new field ‘g, (£) at £ in R as a field whose components

g,m(‘f) with respect to (x') at each point £ in R are equal to the g, ('¢)
at the corresponding point ‘¢ in 'R, that is,

(1.10) o "B (6) & £1(8)
Since '

"Boeld) = A3 Erne (),
we have from (1.4) and (1.10),

(1.11) ‘Bcl8) = (B21°) (0 F)8p('6)-

This process g, — ‘g, is called the dragging along of the field g,, by
the point transformation 7-1 and the field ‘g,, is called the field dragged
along. We say also that the point transformation T-! has deformed the
tensor g,, into ‘g, .and we call ‘g, the deformed tensor of g, by T-1.

Now comparing (1.9) with (1.10) we have

(1'12) ‘ ’g}\’x’(,&) = gAu(E)
with respect to (x') and
(1.13) "&el8) = &0l8)

with respect to (x) for a motion in V,. Hence we have

THEOREM 1.1. In order that (1.2) be a motion in a V , it s necessary'
and sufficient that the transformation '& — & do not deform the fundamental
tensor of the V.

We call ‘g, — g, the Lie difference of g, with respect to (1.2). The
Lie difference of g,, is a tensor of the same type as g,,, because it is the
difference of two tensors of this type. In order that (1.2) be a motion
in a V,, it is necessary and sufficient that the Lie difference of the
fundamental tensor of V, with respect to (1.2) vanish.

We now consider the case in which the point transformation (1.2)
is an infinitesimal one

(1.14) B¢ — £ L y*dt,
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where v* is a contravariant vector field and 4¢ is an infinitesimal. For
the coordinate transformation (1.4) we have

(1.15) & = &) = & 4 vdi,
from which _
(1.16) O = & + o, v*dt

up to infinitesimals of the first order with respect to d¢. In the following
we shall always neglect quantities of an order higher than the first with
respect to df. Of course the equalities (1.14) and (1.16) should be written
with the use of the sign * 1 because they are only valid for special co-
ordinate systems. But we may accept as a general rule that * will be
dropped in cases where no ambiguity can arise.

Substituting (1.16) in (1.11), we find

"B = (83 + 0,0°d1)(8 + 0,0°d) (g5, + V"0, g40d1),
from which
(1‘17) ’g).u o= gkf. + ('U"' au.gkx + gpx a)\ ( + gkp axvp)dt‘
Thus we have

THEOREM 1.2. In order that (1.14) be a motion in a V , it is necessary
and suffictent that

(118) v“aug;« + gpxa)\vp + g)\paxvp =0.
We call '
(1.19) £8, 8% g — 8,2

= (vuap.glx ~+ 8ox alvp 4= e ax Up)dt

1 The sign * is used to emphasize the fact that an equation is only valid or
that its validity is only asserted for the coordinate system or coordinate systems
occuring explicitly in the formula itself. Cf. ScuouTEN [8], p. 2.

2 In the coordinate system (x’) which only differs infinitesimally from (x), this
equation can be written as

;é:gl'x’dt = /gl'x'('s) - g}\’n’(f) = g}\x(,g) - gk’x’(s)-
v
But as is stated below, £ g, is a teusor and consequently
v
L g @t = Ak, £ &redt = £ &4l -+ (term of higher order),
v v v

from which
£ B dt = §0,("8) — gane(£)-
v

This is the usual definition of the Lie derivative. See Yano [13].
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the Lie differential of g,, with respect to (1.14) or with respect to the
vector field v* and [ g,, the Lie derivative! of g,,.
v

The Lie differential of g,, is a ténsor of the same type as g,,. Thus
the Lie derivative of g, is also a tensor of the same type.
In fact, using the relations

Vugxx = 0,8 — Eoxlid) — &t = 0,23
v, v* det 0,v* + {Q}ﬂ,

we can write the Lie derivative of g, in the form

(.28 Ao =2a0" |, ot

which shows explicitly the tensor character of £ S
Thus we have

TueOREM 1.3. In order that (1.14) be a motion in a V , it is necessary
and sufficient that the Lie derivative of g,, with vespect to (1.14) vanish:

(1.22) . égkx = ZVO- vx) == 0

The equation (1.22) is called after Killing ® and a vector field satis-
fying a Killing equation is called a Killing vector.
Myers and Steenrod 7 proved :

THEOREM 1.4. Any closed group of motions in a V, of class C* (r = 2)
is a Lie group of motions.

1 The name *‘‘Lie derivative” was introduced by vaN DaNTZIG [2, 3].

? We use the notations §® and V,® to denote the covariant differential and the
covariant derivative of @ respectively. Cf. ScHOUTEN [8], p. 124.

8The {}} denotes the Christoffel symbol: {J;_}ii_fig“"(aug;\p + 880 — BBin)-
Cf. ScrouteN [8], p. 132.

4 The round brackets denote the symmetric part, e.g. 2V,v,, = Vv, + V,7,,
while the square brackets denote the alternating part, e.g. Iy, = ¥I, — I%)-
Cf. ScuouTeN [8], p. 14.

51In the following we distinguish the contravariant, covariant and mixed com-
ponents of a tensor by the position of the indices, the same kernel being vsed in all
cases. Cf. ScHouTEN [8], p. 44.

§ KiLuing [17.

? Myrks and STEENROD {1].
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§ 2. Affine motions in a space with a linear connexion.

We consider in this section #-dimensional space L, ! provided with
a linear connexion I';(£). In an L, the parallelism between a vector
«” at a point £ and a vector #* 4+ du at a point §* + d&* is defmed by

(2.1 du 3 du* +I"‘ wrdg* = 0.
When we effect a point tra.nsformatlon (1.2), the dlfferentlals dg* at &
are transformed into the differentials

of

e &

(2.2) A==

at ‘&“. Now if we make the condition that the vector #* at £ is trans-
formed from &* to '#* in the same way as the linear elements d* at &%,
then the corresponding vector at ‘€ is '

or*
og’

> m
(2.3) _ w*('é) = u’(€).

When a point transformation (1.2) tranéform$ any, pair of parallel
vectors into a pair of parallel vectors, (1.2) is called an affine motion 2
inan L,.

For an affine motion, we must have

m ' m m
(2.4) Su*('€) L du*('€) 4+ T (€)1 (§)d'e = 0.
Now we introduce the coordinate transformation & = '£*. Then

with respect to (x’) dragged along by T-1:'§ — £, the equation.(2.1)"
can be written as

(2.5) : &#MM@H- % (E)ur (E)dEY = 0,
where

(2.6) w(§) = Axw (&)

and .

(2.7) TEa(8) = (A3 T8 + 2, 4547,

and (2.3) ‘can now be written as
(2.8) w('E) = u* (&).

1 An n-dimensional space with a linear connexion is called an L,. Cf. SCHOUTEN
[8], p- 125.
2 An affine motion was first defired by SLEBODzZINSKI [2].



