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HE MATHEMATICAL STRUCTURE OF THE FEEDBACK CONTRO
PROBLEM FOR LINEAR DISTRIBUTED PARAMETER
SYSTEMS WITH FINITE-DIMENSIONAL CONTROLLERS

M. J. Balas

Electrical, Computer and Systems
Engineering Department

Rensselaer Polytechnic Institute
Troy, NY 12181, USA

1. INTRODUCTION

In previous work (summarized in [1]), we have emphasized finite-dimensional
feedback control of (usually) linear infinite-dimensional distributed parameter ;
systems (DPS). This is the only situation of practical interest in engineering
applications because the controllers must be implemented by on-line digital compute
- with finite wordlength and finite memory-access-time. Since our work on DPS control
has been motivated by engineering systems, e.g. large aerospace structures [2],
Tokomak fusion reactors, and other process control applications, we have been
1nclined to develop new DPS control theory with some practical constraints. This ha
been done in the hope that our results would help engineers to see the limitationsi
what can be accomplished with implementable DPS controllers and would make use of
their experience and intuition in the design and operation of complex systems. In
~ other words, we would like to understand the theoretical structure of the problem 

see what can be accomplished with finite-dimensional control.

We do not mean to suggest that the above is the onlybimportant issue in DPS
 06ntro1; there are, of course, many mathematical problems of interest such as
qontrollability. observability, and stabilizability of linear and nonlinear DPS by
both interior and boundary control (e.g.[22,19,10]). However, not much attention h
been paid to the finite-dimensional control of DPS; notable exceptions are [11,25

In the past, we have concentrated on model reduction of DPS, i.e. obtaining
finite-dimensional approximations of an infinite-dimensional system, and the synth:

of controllers based on these reduced-order models. This has meant that stability

Jitj\ﬁﬁﬁ?, %Eﬂﬁi%}’l)lf%)ﬁ 1 WWW.‘e-rthgbOQk. com

#



ring community; they are the most natural approach to large-scale system

1 problems and have been used in various forms (and occésionally disguises) for

‘ew initial situations appear stable; therefore, the system is stable) or has been

irely disregarded. Although the former is at least a step in the right direction,

latter is unconscionable. We have obtained various stability bounds for DPS via

fgular and regular perturbation techniques (e.g. [1]1,[31 - [81]).

The real problem is to apply stable and effective control to a complex DPS whose

ameters and structure are usually not very well known. Put simply: controlling the
t equation in one space dimension is no big deal; in fact, engineers have been

ng much more complicated things for a long time without the help of mathematical

rol theory (e.g. [21]). However, when the application is, for example, a large

xible structure which is to be constructed and operated in space (where no such
"ings have been done before) where data like the damping and stiffness are poorly

n and the vibration modes can only be approximated for a given configuration. then

rol theory may have something useful (and even comforting) to say. Perturbation

thods seem to us to be especially well suited to this type of problem and may be

e to give indications of stability and performance that can be used in the design

d radeéign) of finite-dimensional controllers for DPS.

n this paper, we will take a somewhat different viewpoint: assuming that a finite-

e !
imensional linear controller is available, what is the most we can expect to

omplish with it on a linear DPS? In [15], Gibson showed that compact perturbations
. never produce exponential stability in a contractive, strongly stable system.
efore, since most practical systems can only introduce feedback through a finite

er of actuators, such finite-rank perturbations, being compact, can never produce

nargin of stability (i.e. rate of exponential decay) in a DPS which does not
ready have such a margin initially. This type of result shows, for example, that a

ible structure without inherent damping can never be stabilized with an
onential rate of decay by feedback through a finite number of actuators. Luckily,

structures have some inherent damping; however, that is not the important point.

ﬁe”result of Gibson is exactly the sort of thing that is needed from DPS control
heory, it tells us that we must be careful of the way we idealize (model) DPS for

purpose of control: no damping, no hope! Of course, the Gibson result assumes

fect state feedback into the actuators and this would never be available in
‘actice. At best, observations can be made from a finite number of sensors and this
ta passed through a filter of finite-order to produce the control commands for a

iite number of actuators. In the spirit (it not the same mathematical direction) of

son's result, we will present results that show what a given finite-dimensional




jimensional projection created by the controller is not necessarily the one the

::designar has chosen by model reduction. Hence, our results give a better insighﬁp

5 " . . . 38
structure of the control problem but do not necessarily indicate how to improve the desi

In Section 2, the preliminaries are presented for the class of linear DPS.
. considered here. In Sections 3 and 4, our main results on the structure of the fi

: dimensional feedback control problem for DPS are given. Some connections betwee

structural results of Sections 3 and 4 and our previous analysis of the controlle
~ design via model reduction are presented in Section 5. Although boundary contro

fﬂsually treated as a separate problem from interior control of DPS, many bounda,F

 control problems can be cenverted to equivalent interior control problems; this
developed in Section 6 and it extends the results of the previous sections to a i
class of practical boundary control problems for DPS. Our conclusions and reco

tions form Section 7.

The class of linear distributed parameter systems (DPS) considered here will h

;the following state space form:

== AV(E) + Bf(t)s

v(0) = v
o

y(t) = Cv(t)

_yhere the state v(t) is in an infinite-dimensional Hilbert space H with inner pro 

denoted by o) and corresponding norm | .||. The operator A is a closed, linea

: :
MR P, respectively, and f(t), y(t) represent the inputs from M actuators and the

féutputs from P sensors, respectively. Thus,

Y(t) = [y, (81, e uy ()] where

yJ(tJ = (cj,v[t]J: dis j <P

Iwith bi and cj intHe




H and the norm
the energy norm).

some care must be used in this choice because, unlike the finite-dimensiona

\fhe state space forms for (2.1) need not be equivalent (even when (A,B,C) is ;

72 > 1 and o is real, when

Ol n K
[ROLA|| < sgn s o= 12eee

1 real A > -0 in the resolvent set of A. The operator R(A,A) = [AI—A]—1 is
d the resolvent operator for A, and it is a bounded linear operator for each A

e(resolvent set p(A); the spectrum o(A) of A is the set o(A) = pc[A).

en ¢ > 0 in (2.4), the semigroup U(t) and the system (2.1) are exponentially
é with stability margin o; for simplicity, we will say that the operator A is

‘entially stable in (2.1), when o > O.

some cases, A can be shown to satisfy dissipative conditions:
AV, V) < isalv,v) 0 >0

(A*v,v) < -olv,v)

1 v in D(A) or D(A*) where A* is the adjoint operator for A. When (2.6) is tr
generates a Co-semigroup U(t), then U(t) satisfies (2.4) with K = 1 and o > 9'
1Theo. 2.4 or [25] Theo. 3.2). However, not every exponentially stable system
tor A satisfies a dissipativity condition in the original norm; see [25] Theo.
Bz i
thé/generation of a semigroup for (2.1) is the mathematical way of saying that ﬁ
(2.1) is well-posed and, hence, represents a physical system. The physical

-em modeled by (2.1) is the weak (or mild) formulation of the DPS:

y t
v(t) = Ultlv, + [ UCt-T)BFf(T)dT
0

Cv(t)

other types of stability besides expnnential stability (in fact, these




Pg #nr.engineering systems a margin of stability is essential in order that the
be able to tolerate small parameter variations, noise, and nonlinearities whioh
ignored in the model (2.1). Of course, a more detailed model, including all the
'T factors, could be developed, in theory, but in practice such detail is poorlyj
: Conseqﬁently, this is one of .the trade-offs in controller design: either make a
simblified model of the DPS and design a controller which yields exponential st
with as satisfactory a stability-margin as possible or make an extremely detailed
model contalning all possible factors affecting performance and design a correé r
~controller to deal with this system, e.g. make it strongly stable. The latter can
lead ultimately to madness since the more closely you look at a system the more;;
:is revealedﬂ Therefore, even a detailed model of the DPS may not incorporate ali'
possible factorsy; hence, such an approach is very likély to lead to an unstable
dlosedfloop system if weaker stability than exponential stability is used in the
design criterion. Furthermore, the level of detail of the model can quickly exha
- the available possibilities for controller design to handle such systems. Enougﬁ;
detail must be included so that the controller can be designed to yield a reésonpﬁ
- level of performance from the closed-loop system. Most control engineers would‘&g
with this imprecise statement of what they do; however, it takes quite a bit of
experience with specific engineering systems to decide what the words "enoﬁgﬁ" qnﬁ

"reasonable” mean (and it is not our intention to presume to do this here).

Feedback control for such a DPS as (2.1) should be accomplished with finite-

dimensional, discrete - time controllers of the form:
flk) = L11 y(k) + L12 z(Kk)
z(k+1) = L21 y(k) + L22 z(k)

~ where z(k) belongs to R*. Such controllers can be implemented with on-line digita
computers whose memory-access-time and memory capacity is related to the control
. dimension a. Although the discrete-time acpect of the controller is not a trivial

issue (e.g. [18]1), for convenience here, we shall deal only with the continuous-t

: f(t] = L11 yit) = L12 z(t)

z2(t) = L21 y(t) + L22 zLE)o = Bzlh )+ KytE ) £ EFLL)

‘where z(t) belongs to R%.

Tﬁe matrices F, K, and E are related to L21 and L22 by:

f




miracles (such as reconstructing the full DPS state). Special cases of (2.
tic (or output) feedback: :

By 3k e

\

this section we will examine what can be accomplished with a finite-dimensional

rver of the form:

glt) = Q 1 y(t) + 012 ZEL) (3. 1a)-l

1
B2 bl 5]+ ERlE) (3.16)

belongs to R* with a < . If this observer is used to estimate the state
infinite-dimensional DPS (2.1), then at best it can asymptotically reconstruct

e by the following result:

1. Assume f(t) in (2.1) is continuously differentiable.

(a) F is stable (i.e. all eigenvalues of F are in the open left-half of the
: ‘ complex plane),
- (b) there exists a bounded linear operator T: H + R* such that
BB = TA '+ DLV =0
for all v in D(A), and
(c) E is chosen so that E = TB

(t) in (3.1b) is given by

2t = Tv(t) » a(t)




pair of nontrivial subspaces HN

dim QN = No< iR

1im [q(t) - I;Nv(tJ]

tooo

lim [g(t) - v(t)] = - lim P_v(t)

to to R

fwhére ;N and ER are the projections onto HN and HR defined by (3.6). In

subspaces are given by

et
HN N(T)

He = N(T)={v € D(T) | Tv = 0}

where ; = [ b ]: H > RP 3t

T

In order to prove Theo. 1, we will need the following result about pseudo-inve:
of operators:
ﬁ

'-Theorem 2. Given a bounded linear operator T: H, - H2 with Hi Hilbert épaqas.

is onto (surjective), then the pseudo-inverse T of T defined by

#
I H2 o H1 with

#-p

i N

where PN is orthogonal projection onto N(T) has the following properties:
A
(a) T# is well defined and linear on H2
oy M Tﬁ% =T
(c) T# is a bounded operator
(d) If dim H2 < », then dim N[TJL = dim H2'

‘The proofs of Theos. 1 and 2 appear in Appendix I. Although properties (a) énﬁ
of Theo. 1 are easy to guarantee by the choice of the observer parameters F and
property (b) may seem to be more formidable. However, the following result sug

~ otherwise:
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