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Preface

Dynamic programming is used to solve complex optimization problems.
This book presents the theory and computational aspects of dynamic
programming. It is an applied book, designed for operations researchers,
management scientists, statisticians, engineers, and social scientists.

Scientific decision-making involves model building and then solving the
model to determine an optimal solution. Many models, encompassing
different disciplines and areas of application, are amenable to solution by
dynamic programming. These models contain many decision variables
and have a mathematical structure which is such that calculations of the
optimal decisions can be done sequentially. When and how the calculations
can be done sequentially is the essence of dynamic programming. Se-
quential optimization loosely means determining the optimal decisions one
at a time. Often the ability to determine decisions one at a time makes a
problem computationally feasible.

Extensive applications have been made in inventory theory, allocation
problems, control theory, search theory, and chemical engineering design.
By identifying the mathematical structures amenable to dynamic program-
ming analysis, it is hoped that new applications will be developed. This
problem is the subject of Chapter II. It is preceded by a brief discussion
of model building, the dynamic programming approach, and optimization
in Chapter 1. Chapter II presents the basic approach of multistage problem
solving and when it can be used in optimization. By knowing when it is
theoretically possible to use dynamic programming, an analyst can decide
whether it is possible to solve his problem by dynamic programming. But,
knowing that something is possible is different from knowing exactly
how to do it.
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viii Introduction to Dynamic Programming

Chapters III and IV are the “how-to-do-it” chapters. Basic computations
are the subject of Chapter IIl—how the dynamic programming formula-
tion is obtained, how the computations are organized, the preparation of
flow charts for computers, the data requirements, and sensitivity anal-
ysis. The exercises are especially essential in Chapter III. They demon-
strate the basic ideas of dynamic programming formulation and solution.
It is absolutely necessary to solve problems to understand dynamic pro-
gramming. Methods for doing computations as efficiently as possible are
given in Chapter IV. This is most crucial when expensive computer time
is used.

Chapter V extends the results obtained for deterministic multistage
decision models to stochastic and competitive models. In Chapter VI the
usual assumption about the serial structure of adjoining stages is removed
to extend the analysis to processes with branches and feedback loops.
Models with an infinite number of decisions are discussed in Chapter VII.
The relationship between dynamic programming and the calculus of vari-
ations is revealed. Some general conclusions and a discussion of applica-
tions are given in Chapter VIII.

Almost every new idea introduced is illustrated with a detailed analysis
of one or more examples. The form of the examples assumes that a model
has already been constructed, so that attention can be given to its dynamic
programming formulation and solution. In this framework, one can relate
his own problems to the problems in the text by adding the necessary
context to the examples. Furthermore, organizing the problems according
to their mathematical structure will be of great advantage to those in-
terested in developing new applications.

The development of dynamic programming is almost exclusively due
to Richard Bellman and his colleagues at the Rand Corporation. His
books and papers furnished a large fraction of the source material for
this text. Professor L. G. Mitten of Northwestern University introduced
me to dynamic programming. His interest stimulated mine. I am thankful
to him for encouragement and for valuable suggestions on the organization
and technical content of the book. I hope the book makes him proud. Dr.
William W. Hardgrave read a draft of the manuscript in detail. His com-
ments were invaluable in transforming the manuscript from draft to final
copy. My wife, Ellen, has helped immensely with style and grammar—a
difficult task considering her lack of interest in the subject matter. All of
the several reviews obtained by John Wiley have helped to improve the
book. A draft of the book was used in a one-semester two-hour-per-week
course at Johns Hopkins which I taught jointly with Dr. Mandell Bellmore.
I am grateful to him and the students who found numerous errors while
suffering through the rough draft. I would like to express my appreciation
to Mrs. Helen Macaulay of Johns Hopkins for her excellent typing of
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part of the first draft and the entire second draft of the manuscript, and
to Miss Jane Shaw of Leeds University, U. K., for typing a considerable
portion of the first draft. I am also grateful to Michael Magazine for
reading the galley proofs and assisting with the preparation of the index.

George L. Nemhauser
Baltimore, Maryland
April 1966
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Introduction

1. Background

Dynamic Programming is an approach to optimization. Optimization
means finding a best solution among several feasible alternatives. The
term “a best solution” is used because there may be more than one
optimal solution.

The representation of a problem in abstract or symbolic form is known
as a mathematical model. Characterizing optimization problems by mathe-
matical models goes back to the Greeks, if not further. Attributed to
Greek mathematics is the solution of problems such as finding the geo-
metric figure of minimum perimeter that encloses a given area.

Theories of optimization existed long before the development of the
calculus. Nevertheless, the formal development of optimization theory
came from the calculus. After the invention of the calculus, mathematicians
worked actively on optimization problems. The theory was developed
for mathematical models containing continuous variables and differentiable
functions. Many of the problems studied were of geometrical background.
Although the theory provided solution procedures for problems with
several variables, the theory was not adequate to deal computationally with
models containing a very large number of variables. However, a few
variables were generally sufficient to characterize most of the geometrical
problems of interest then. The classical development of optimization theory
through the calculus was essentially complete by the end of the nineteenth
century. A good exposition is contained in Theory of Maxima and Minima
by Hancock [35].

In the 1940’s there was a reawakening and change of direction in the
study of optimization theory. This renaissance was stimulated by the war
effort. Two parallel but interrelated occurrences are especially significant;
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2 Introduction to Dynamic Programming

the work of scientists and mathematicians on military operational problems,
and the invention and development of the digital computer.

The scientific approach to military problems, and then, after the war,
to industrial and other institutional problems, became the field of study
known as operations research.t The formulation and solution of mathe-
matical models of optimization is an integral part of operations research.
These models of complex logistic, production, and distribution systems
are generally characterized by a large number of variables, and are often
of a form not amenable to solution by the calculus.

Pioneer operations analysts simultaneously developed models and solu-
tion techniques. Their notable successes were partly due to the rapid
evolution of high-speed digital computers. Given a machine that could do
thousands of calculations per second, it became practical to think about
solving problems containing hundreds or even thousands of variables. This
realization stimulated the study of iterative optimization schemes and
eventually led to the development of linear and nonlinear programming,
dynamic programming, and various search methods.

The evolution of these methods and their refinement may be thought of
as the renaissance of optimization theory. The motivation for this regen-
erated interest stems from operations research. Thus modern optimization
theory is usually studied in conjunction with operations research. However,
it can and has been applied to problems completely within the domain of
traditional disciplines. It is possible to study the methodology without
making reference to digital computers. However, as the success of the
methods depends largely on digital computers, we shall consider the role
of the computer.

2. Mathematical Models of Decision Making ¥

A mathematical model is a symbolic representation of relations among
the factors in a problem of decision making. The basic components of the
model are:

1. The variables D = (dy, d>, . . ., d,)—those factors that can be mani-
pulated to achieve the desired objective. These variables are commonly
referred to as independent or decision variables.

2. The parameters Y = (¥1, s, - - . , Yp)—those factors that affect the
objective but are not controllable.

3. The measure of effectiveness (R)—the value, utility, or return as-

+ Some general references on operations research are Churchman et al. [23],
Flagle et al. [30], and Saaty [60].
1 Ackoff [1] contains an excellent discussion of mathematical decision models.



Introduction 3

sociated with particular values of the decision variables and parameters.
The measure of effectiveness, alternatively called the utility measure, cri-
terion function, objective function, or return function, is a real-valued
function of the decision variables and parameters, which can be rep-
resented as

R = R(D,Y)

There is a wide variety of commonly used measures of utility, such as
cost, profit, rate of return. It will be assumed that a specific measure of
effectiveness can always be chosen that will adequately reflect the im-
portant differences among different values of the decision variables.

4. The region of feasibility (S)—in most circumstances the decision
variables are limited in the values they can assume. These limitations are
generally given by specifying a region of feasibility or constraint set (S).
The feasible values for the decision variables must be contained in the
set S, thatis, (D € S). Sometimes it is possible to represent all or a part of
the constraint set by equations and/or inequalities of the form

g(D) =

AYARTRVAN
°
I
3

Equations and inequalities that determine the region of feasibility are
usually called constraints or restrictions.

Any D satisfying the constraints is known as a feasible solution to the
model. The decision-making problem is to find a feasible solution that
yields high value or return. An optimal solution (D*) is defined as a
feasible solution producing the greatest possible return, that is,

R(Y) = R(D",Y) > R(D,Y), D ¢S
= max R(D,Y), D csS
D
For every problem, the optimal R(Y) is unique (when it exists) but

there may be more than one optimal solution.t
In most real situations it is satisfactory to find a solution yielding a

+ The question of existence rarely arises in a real problem but must be explained
mathematically. First, if R has no upper bound, no maximum is said to exist. A
simple example will suffice to explain the second possibility. Suppose R(D, Y) =
D, where D is a real scalar variable restricted to the open interval 0 < D < 1. The
function R(D, Y) has many upper bounds: the smallest is unity. This smallest upper
bound is called the supremum. Since there is no value of D in the open interval,
0 < D < 1, which yields the supremum, no maximum is said to exist. For almost
all problems of practical interest the supremum and maximum are equivalent. We
shall only speak of maxima and minima although we could use the more general
terms suprema and infima.



4 Introduction to Dynamic Programming

near-optimal return. However, the optimal return is established since it
is not usually possible to evaluate the goodness of a nonoptimal solution.

The great advantage of a mathematical model is its generality and ease
of manipulation. Any sort of sensitivity analysis, such as changing values
of the variables, parameters, constraints, or even changing the functional
relationships, is most easily accomplished when there is a mathematical
model of the system. But these enhanced investigative powers are not
attained without cost. The amount of mental effort and analysis required
to construct a mathematical model of real-world phenomena is great.
First, the system must be described unambiguously. The variables must be
identified and a single measure of utility chosen. The relations among the
variables must be expressed mathematically. One of these relations is the
utility measure and the remainder are constraints.

A solution to a model can be no better than the model itself. Conse-
quently the model must be an accurate representation of the system. But
how accurate? Unfortunately, there are no hard and fast rules. The ap-
propriate accuracy of the model depends upon how accurate a solution is
needed and how decisions change as the model is modified. Often this
can be determined only by trial and error. But it is generally good advice
to try the simplest model first. Additional accuracy is likely to mean addi-
tional cost and time in constructing the model, and a more accurate
model may be difficult to solve and yield no better results.

Various simplifying procedures can be attempted. Decision variables
and parameters apparently having negligible effect on the return can be
eliminated. The nature of the variables can be changed from continuous
to discrete or vice versa. Often in a first model stochastic variations in the
parameters are ignored. An obvious simplification is to approximate the
return function and constraints by, say, linear functions. We must com-
promise by balancing solvability and reality. The compromises that must
be made will, in part, depend upon the power of the solution techniques.
Obviously, sharper optimization tools permit the use of more complicated
models.

It is difficult to present a mutually exclusive and collectively exhaustive
classification for mathematical models of decision making. But it is useful
to make some distinctions. In deterministic models the return is given un-
ambiguously by specifying values for the decision variables. There are no
uncontrollable or random variables. In contrast, stochastic or probabilistic
models contain random variables that cannot be controlled and whose
values are given by probability distributions. A deterministic model can
be considered as a special case of a stochastic model, in which each
random variable assumes a particular value with probability 1 and all
other values with probability 0. In this sense it is possible to treat the two
cases together. For the sake of clarity, we shall defer discussion of sto-
chastic models until we have developed the theory and computational
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aspects concerning deterministic models. A further classification in this
direction is competitive or game-theoretic models, in which different vari-
ables are subject to different decision makers’ control. We shall elaborate
on these classifications in Chapter V.

The continuous or discrete nature of the variables is another mode of
classification. This breakdown will be useful in the discussion of computa-
tional aspects of dynamic programming in Chapters III and IV. Basically,
a continuous variable can assume any real value in an interval, whereas
a discrete variable is restricted to a finite number of values in an interval.

Different forms of the objective function and constraints yield still
another division of mathematical models. A meaningful grouping is be-
tween linear and nonlinear models. In a linear model the objective function
is

R(D) = C1d1 + ngz + ...+ Cndn

and the constraints are linear inequalities. Later, we make a very crucial
distinction between objective functions of several variables that are
separable and those that are not. This technical difference will not be ex-
plained now, but will be expanded upon in great detail in Chapter II. An
example of a separable function is

R(D) = ri(d1) +rods) + ...+ ru(dy)

However, an arbitrary function of r variables is not separable. Closely
related to the notion of separability is single-stage versus multistage model.
In a single-stage decision process all decisions are made simultaneously,
while in a multistage decision process the decisions are made sequentially.
This division is not based entirely on the physical characteristics of the
process, since it is often possible to create artificially a multistage process
from a single-stage one. We would imagine that there are considerable
computational advantages to making decisions one at a time rather than
all at once. This is the raison d’étre of dynamic programming.

3. General Approach of Dynamic Programming

Having constructed an appropriate mathematical model, we must choose
an optimization technique to solve the model. The way we determine an
optimal solution depends, of course, on the form of the objective function
and constraints, the nature and number of variables, the kind of compu-
tational facilities available, taste, and experience.

Often, before performing the optimization, it is desirable to make some
chang@s of variables and transformations. In contrast to simplifying the
model, these preparatory operations preserve the properties of the model
completely. The transformed model has the same optimal solution as the
original, but is of a form that can be optimized more easily.



