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This text is intended as an introduction to the analysis (using Fourier
techniques) of continuous and discrete deterministic signals, along with both
the estimation and spectral analysis of random signals. Because the treat-
ment is applicable to optical, acoustical, electrical, etc., signals, it should be
useful to students of both physics and engineering (especially electrical).

In order to be appropriate for a course given at any time in the
curriculum, the presentation has been designed so that no detailed mathe-
matical knowledge beyond the completion of sophomore calculus is re-
quired. No familiarity with Fourier transforms is assumed, nor is any
extensive knowledge of probability and random processes. Furthermore,
vector calculus and complex variables have been avoided wherever possible.
Also, matrix notation is used sparingly, although a limited familiarity with
matrix operations is assumed.

The text is designed for a 12-week course and divided into two portions:
deterministic signals and random signals. Chapters 1-5 are devoted to the
analysis of continuous and discrete deterministic signals, and it is expected
that this material could be covered in approximately 5 weeks. The prop-
erties, spectral analysis and estimation of random signals are covered in
Chapters 6-9, and should occupy the remainder of the course.

In order to assist the reader in understanding the (sometimes complex)
concepts presented, examples have been liberally included in every chapter.
Usually, those examples chosen are related to engineering applications, such
as radar, antennas, optical processing, tomography, analog and digital
filters, and target tracking, so that the student can understand how the
techniques studied are applied in practice. Also, the problems are designed
not only to test the readers understanding, but also to illustrate applications
and extensions that could not be included in the main text.

The question of notation is always a vexing one. It is, of course,
impossible to find a system of notation that is consistent with that used by all
other authors. I have tried to use conventional notation wherever possible,
but there were several instances where I chose to depart from usual
electrical engineering notation. In particular, I use a prime on a symbol to
indicate that it represents an estimate, whereas many authors use a caret
over the symbol for this purpose. Instead, I have used a caret over a symbol
to indicate that it is the Fourier transform of a discrete signal (to differen-
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tiate it from the Fourier transform of a continuous signal). The other
departure from the usual notation of electrical engineering, but not physics,
is my use of an overbar (i.e., x = expectation of x) to denote an expectation
(or ensemble average) of a random variable, whereas many authors use E(x)
for this purpose. I was forced to abandon E(x) in favor of x because many of
the results in Chapters 7-9 became too cumbersome when the E(---)
notation was used.

Finally, I wish to express my thanks to Avco/Textron for providing
an environment conducive to the preparation of this manuscript, and
especially to Clara for her continuous support and encouragement.

Wilmington, Massachusetts RoNALD L. FANTE
September 1987



s INTRODUCTION

Fourier methods will be used here to study the properties of both de-
terministic and random signals. Although other techniques are sometimes
used, Fourier analysis is by far the most common and useful, having
important applications in virtually every field of engineering and physics.
Some examples are

1.

Signal Analysis. The Fourier transform allows one to deduce the
frequency content (i.e., how fast the signal varies) of an arbitrary
signal.

Quantum Mechanics. The position and momentum of a particle are a
Fourier transform pair; the Heisenberg uncertainty principle expresses
a property common to all Fourier transform pairs.

. Linear Systems. The analysis and design of both continuous and

discrete linear systems is considerably simplified through use of
Fourier transforms. In particular, it is found that the Fourier trans-
form of the output of an arbitrary linear system is simply the product
of the Fourier transform of the input to the system and a function
(called the system function) that describes the linear system.

. Antennas. The signal radiated by either an electromagnetic or acous-

tic antenna is equal to the Fourier transform of the source distribution.

Optical Processors. The electric field distribution in an appropriate
plane behind a thin lens is the Fourier transform of the field in an
appropriate plane in front of the lens. This property forms the basis of
coherent optical processing and is a cornerstone of the computer of
the future.

Spectroscopy. There is a technique known as ‘“Fourier Transform
Spectroscopy” where Fourier transforms are used to determine the
spectral content (brightness versus wavelength) of an arbitrary light
source.

Tomography. A special property of two-dimensional Fourier trans-
forms forms the basis of tomographic image reconstruction.

Partial Differential Equations. Fourier transforms are routinely used
in the solution of partial differential equations and other areas of
mathematical physics.

xiii



xiv INTRODUCTION

Thus, Fourier transforms are quite important and the discovery of fast
algorithms for computing these transforms has made them an even more
valuable and useful tool.

Part I of this text will be devoted to the study of deterministic signals. In
Chapter 1 it is shown how Fourier series can be used to represent and
analyze periodic functions. Then after a digression (Chapter 2) on the
properties of the singularity functions (Dirac delta function, etc.), Chapter 3
covers the application of the Fourier transform to the analysis of aperiodic
continuous (analog) signals. Chapter 4 shows how one obtains discrete
signals from continuous ones, and the role of the Fourier transform in the
analysis of digital signals. Chapter 5 discusses the discrete Fourier transform
and special algorithms that are appropriate for their rapid computer-
computation.

These approaches are applicable to deterministic signals. For random
signals the approach must be generalized, and Part II is devoted to this end.
Chapter 6 is a relatively extensive discussion of the properties and repre-
sentation of random signals, and in Chapter 7 we show how Fourier
techniques are used to determine their spectral (frequency) content. Chap-
ter 8 is devoted to the principles of signal estimation, and in Chapter 9 these
techniques are used to estimate the power spectral density of random
signals.
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Fourier Series

1.1 THE FOURIER SINE/COSINE SERIES

We shall begin our discussion of signal analysis by considering some simple
periodic signals such as shown in Figure 1.1 (these are typical of the pulse
trains produced by an electronic signal generator for use as a clock in a
digital system). A signal s(¢) is called “‘periodic” in time ¢ if it repeats itself
every T seconds, so that s(t + T) = s(t). The quantity T is called the period
of the signal, and F=1/T is known as its frequency. A quantity o =
2 - frequency is also often used and is known as the “radian frequency.”
The units for the period are ‘“‘seconds,” those for the frequency are usually
“hertz”” (abbreviated Hz) or sec ', and those for the radian frequency are
“radians per second.”

Upon observing the signal s,(f) in Figure 1.1a, one might guess that,
without too great an error, it could be approximated by cos(27¢/T), which
is shown as a dashed line. It might also be expected that the fit would be
ever better if more cosines are added and s,(t) approximated by

s(H)=A4, cos(%) + A, cos 2(%) +---+ A, cos n(z—;£> , (D)
where the coefficients are chosen (in a way to be discussed later) to provide
the best possible fit to the actual signal. Finally, we could speculate that if
we kept enough terms in Eq. (1) the fit would become perfect. This can be
shown to be precisely what happens (except for very near any discontinuities
in s,(t), where there is a mismatch known as the Gibbs phenomenon; this
will be discussed later).

The series in Eq. (1) contains only cosines because the function s,(z) is
symmetric about the time origin (a symmetric function is one for which
s(—t) = s(t)). Now suppose we displace s,(¢) to the right by a time A to
produce the function s,(#) shown in Figure 1.1b. Then in all the terms on the
right-hand side of Eq. (1) ¢ is replaced by ¢ — A and the nth term becomes

2nt 2anA . 2@nt | 2wnA

2mhn
cos—~ (t —A)= cos T cos— + sin T ST (2)
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Figure 1.1 Periodic pulse trains.

so that the result in Eq. (1) now is

= 2mwnA 2 t s 2
s,(8) = 2 [A” cos 777’,1 ] i 2 [An sin wnA]sin27mt
n=1 = T T

(3)

- 2mnt | < 2mnt
=§_:lancosﬂTn+Zb,,Sin 7;’1, (4)

n=1

where a, = A, cos(2wnA/T) and b, = A, sin(2mwnA/T).

Finally, suppose that the function s,(¢) is displaced upward by an amount
D to produce s,(¢) as shown in Figure 1.1c. Then a constant term a,/)2=D
would need to be added to the series in Eq. (4), and this gives

s;(6) = Loy 2“_": a, cos o 2 b, 277nt (5)
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