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Preface

The increase in the concentration of molecules from a gaseous phase in the neigh-
boring solid surface was recognized in 1777 by Fontana and Scheele, and the term
ADSORPTION to describe the effect was coined by Kayser in 1881. On the other
hand, DIFFUSION is a general property of matter related to the tendency of a
system to occupy all its accessible states. The quantitative study of this phenomenon
started in 1850-1855 with the works of Adolf Fick and Thomas Graham.

The development of new materials is a basic objective of materials science
research. This interest is fueled by the progress in all fields of industry and technol-
ogy. For example, the evolution of the electronic industry initiated the development
of smaller and smaller elements. The size of these components is approaching
nanometer dimensions, and as this dominion is entered, scientists have found that
properties of materials with nanometer dimensions, i.e., on the length scale of about
1-100 nm, can differ from those of the bulk material. In these dimensions, adsorption
and diffusion are important methods of characterization. They are processes that
determine the governing laws of important fields of application of nanoporous
materials.

According to the definition of the International Union of Pure and Applied
Chemistry (IUPAC), POROUS MATERIALS are classified as microporous materi-
als, which are those with pore diameters between 0.3 and 2 nm; mesoporous mate-
rials; which are those that have pore diameters between 2 and 50 nm, and
macroporous materials; which are those with pores bigger than 50 nm. Within the
class of porous materials, nanoporous materials, such as zeolites and related mate-
rials, mesoporous molecular sieves, the majority of silica, and active carbons are the
most widely studied and applied. In the cases of crystalline and ordered nanoporous
material such as zeolites and related materials and mesoporous molecular sieves,
classification as nanoporous materials is not discussed. However, amorphous porous
materials may possess, together with pores with sizes less than 100 nm, larger pores.
Even in this case, in the majority of instances, the nanoporous component is the
most important part of the porosity.

Adsorption and diffusion have a manifold value, since they are not only powerful
means for the characterization of nanopoorus materials but are also important indus-
trial operations. The adsorption of a gas can bring information of the microporous
volume, the mesopore area, the volume and size of the pores, and the heat of
adsorption. On the other hand, diffusion controls the molecular transport of gases in
porous media and also brings morphological information, in the case of amorphous
materials, and structural information, in the case of crystalline and ordered materials.

Crystalline, ordered, and amorphous microporous and mesoporous materials, such
as microporous and mesoporous molecular sieves, amorphous silica and alumina,
active carbons, and other materials obtained by different techniques, are the source



of a collection of advanced materials with exceptional properties and applications
in many fields such as optics, electronics, ionic conduction, ionic exchange, gas
separation, membranes, coatings, catalysts, catalysts supports, sensors, pollution
abatement, detergency, and biology.

This book is derived from some of the author’s previous books, chapters of books,
and papers. The author has tried to present a state-of-the-art description of some of
the most important aspects of the THEORY and PRACTICE of adsorption and
diffusion, fundamentally of gases in microporous crystalline, mesoporous ordered,
and micro/mesoporous amorphous materials.

The adsorption process in multicomponent systems will not be discussed in this
book with the exception of the final chapter, which analyzes adsorption from the
liquid phase. Fundamentally, we are studying adsorption and diffusion from the point
of view of materials science. That is, we are interested in the methods for the use
of single-component adsorption and diffusion in the characterization of the adsorbent
surface, pore volume, pore size distribution, and the study of the parameters char-
acterizing single-component transport processes in porous systems. Also studied in
the text are: adsorption energetic, adsorption thermodynamics, and dynamic adsorp-
tion in plug-flow bed reactors. The structure or morphology and the methods of
synthesis and modification of silica, active carbons, zeolites and related materials,
and mesoporous molecular sieves are discussed in the text as well. Other adsorbents
normally used in different applications, such as alumina, titanium dioxide, magne-
sium oxide, clays, and pillared clays are not discussed.

From the point of view of the application of dynamic adsorption systems, the
author will analyze the use of adsorbents to clean gas or liquid flows by the removal
of a low-concentration impurity, applying a plug-flow adsorption reactor (PFAR)
where the output of the operation of the PFAR is a breakthrough curve.

Finally, the book is dedicated to my family. It is also devoted to the advisors of
my postgraduate studies and the mentors in my postdoctoral fellowships. In partic-
ular, I would like to recognize Dr. Professor Jiirgen Biittner, advisor of my M.Sc.
studies, who was the first to explain to me the importance of the physics and
chemistry of surfaces in materials science. I would like also to acknowledge my
senior Ph.D. tutor, the late Professor Alekzander A. Zhujovistskii, who, in 1934,
was the first to recognize the complementary role of the adsorption field and capillary
condensation in adsorption in porous materials and was later one of the creators of
gas chromatography. He taught me how to “see” inside scientific data using general
principles. Also, I wish to recognize my junior Ph.D. tutor, Professor Boris S.
Bokstein, a well-know authority in the study of transport phenomena, who motivated
me to study diffusion. I want, as well, to acknowledge the mentors of my postdoctoral
fellowships, Professor Fritz Storbeck, who gave me the opportunity to be in contact
with the most advanced methods of surface studies; Professor Evgenii D. Shchukin,
one of the creators of a new science, physicochemical mechanics, who taught me
the importance of surface phenomena in materials science; and the late academic
Mijail M. Dubinin and Professor A.V. Kiseliov, two of the most important scientists
in the field of adsorption science and technology during the last century. Both of



them gave me the opportunity to more deeply understand their philosophy of adsorp-
tion systems.

Professor Rolando M.A. Roque-Malherbe, Ph.D.
Las Piedras, Puerto Rico, USA
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’l Statistical Mechanics

1.1 INTRODUCTION

Statistical mechanics, or statistical physics, also named statistical thermodynamics
in equilibrium systems, was originated in the work of Maxwell and Boltzmann on
the kinetics theory of gases (1860-1900) [1-11]. Later, in his book Elementary
Principles of Statistical Physics, Gibbs (1902) made a major advance in the theory
and methods of calculation. In the twentieth century, Einstein, Fermi, Bose, Tolman,
Langmuir, Landau, Fowler, Guggenheim, Kubo, Hill, Bogoliubov, and others con-
tributed to the subsequent development and fruitful application of statistical mechan-
ics [1-11].

Statistical mechanics deals with macroscopic systems, which consist of a col-
lection of particles, for example, photons, electrons, atoms, or molecules, with
composition, structure, and function. In statistical mechanics the term state has two
meanings: the microstate, or quantum state, and the macrostate, or thermodynamic
State.

1.1.1 THERMODYNAMIC FUNCTIONS AND RELATIONSHIPS

Statistical physics, as will be shown in the present chapter, is a very comprehensive
methodology for the calculation, for example, of the thermodynamic functions
characterizing a macroscopic system. The fundamental equation of thermodynamics
for a bulk mixture (i.e., a number of components included in the same homogeneous
phase is [1,2]:

dU = TdS — PaV + z Wdn,

where U(S,V,n,) is the internal energy of the system; S, its entropy; V, its volume; 7,
its temperature; p;, the chemical potentials; and #,, the number of moles, of one of
the N components which form the system.

Similarly, using the Legendre transformations (see Appendix 1.1), by which the
product of the substituted variables, in the present case, TS will be subtracted:

F=U-TS

one gets a new thermodynamic function, in the present case, F(7; Vn;), the Helmholtz
free energy.
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At this point, an additional thermodynamic function, the enthalpy, could also be
defined [1,2]:

H=U+PV.

After that, the Gibbs function, or free enthalpy, is also obtained, with the help
of the Legendre transformation [1,2]:

G=H-TS
It is also possible to define the grand potential, or Massieu function [10]:
Q=F-3un,
Subsequently, the corresponding set of differential equations for a bulk mixture

are [1,2,10]:

dF =-SdT - PdV+ ) Wdn
dQ=-SdT —PdV - Y ndy,
dH =TdS - VdP+ Y Wdn,

dG =—SdT +VdP+ Y \dn,

The grand potential, which is generally absent from textbooks on thermodynamics,
has a particular meaning in statistical thermodynamics. It is the thermodynamic poten-
tial for a system with fixed volume, V, chemical potentials, y, and temperature, 7, and
as will be later shown, is related to the grand canonical partition, which is one of the
magnitudes calculated with the help of the methods of statistical thermodynamics.

Table 1.1 reports some thermodynamic relations [10].

1.2 DEFINITION OF MICROSTATE AND MACROSTATE

A microstate is defined as a state of the system where all the parameters of the
component particles are specified [7]. In quantum mechanics, in a system in a
stationary state the energy levels and the state of the particles in terms of quantum
numbers are used to specify the parameters of a microstate. At any given time the
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system will be in a definite quantum state, j, characterized by a certain wave function,
@;, which is a function of a huge number of spatial and spin coordinates, an energy,
E;, and a set of quantum numbers [7].

A macrostate is defined as a state of the system where the distribution of particles
over the energy levels is specified [7]. The macrostate includes different energy
levels and particles having particular energies. That is, it contains many microstates.
However, following the principles of thermodynamics [1,2], it is known that, for a
single component system, we only need to designate three macroscopic parameters,
ie, (RV,T), (PV.N), or (E,V.N), where P is pressure, V is volume, T is temperature,
and N is the number of particles, in order to specify the thermodynamic state of an
equilibrium single-component system. In this case, the equation of state for the
system relates the three variables to a fourth. For example, for an ideal gas we have:

PV =nRT = NKkT.

in which R = 8.31451 [JK-'mol-'] is the ideal gas constant, where R = N,k, in which
N, =6.02214 x 102 [mol-'] is the Avogadro number, and k = 1.38066 [JK-1, is the
Boltzmann constant.

In an ideal gas, we assume that the molecules are noninteracting, i.e., they do
not affect each other’s energy levels. Each particle possesses a certain energy, and
at 7> 0, the system possesses a total energy, E. From quantum mechanics, we know
that the possible energies, if we consider the particles confined in a cubic box of
volume, V = abc (see Figure 1.1), are [8]:

B 2 2
E(n,nyny)=——| -+ 2422
8m\ a®> b* ¢



