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Introduction

1.1 What s a Signal?

Signals, in one form or another, constitute a basic ingredient of our daily lives. For example, a
common form of human communication takes place through the use of speech signals, which may be
in a face-to-face conversation or over a telephone channel. Another common form of human
communication is visual in nature, with the signals taking the form of images of people or objects
around us. Indeed, there are so many signals encountered in our living environment that the list of
signals is almost endless.

Generally speaking, signals are a carrying body to convey information, while the information is
contents embodied in signals. However, signals, in a narrow sense, are mathematically defined as a
function of one or more independent variables that conveys information on nature of a physical
phenomenon. When the function depends on a single independent variable, the signal is said to be
one-dimensional. For Example, speech and music signals represent air pressure as a function of time
at a point in space. When the function depends on two or more independent variables, the signal is
said to be multidimensional signal. For example, a black-and-white picture is a representation of light
intensity as a function of two spatial coordinates; a video signal in television consists of a sequence of
images, called frames, and is a function of three independent variables that are two spatial coordinates
and time.

Generally, a signal is a function of independent variables such as time, distance, position,
temperature, pressure and etc. It is a common convention that the independent variable of the
mathematical representation of a single variable signal will be represented to as time in this textbook,
although it may in fact not represent time.

1.2 Whatls a System?

A system, in its most general form, is defined as a combination and interconnection of several
components to perform a designed task. For examples, the human physiology system, ecological
system, communication system, electric power system and global positioning system are all the
real-world systems, in a wide sense. However, a system, in a narrow sense, is mathematically defined
as a transformation or operator that maps an input signal into an output signal. Specifically, a
discrete-time system can be denoted as

¥(n) = Tlx(n)] (1.1)

where x(n) is the input signal, y(n) is the output signal and ‘7’ is  x(n) ri-] n(n)

an operator which represents a rule or computation applied to the
input signal to yield the output signal. Such a system is often depicted
using a block diagram shown in Figure 1.1.

A basic structure of commonly used communication systems is depicted in Figure 1.2.
There are three basic elements in this system, namely, transmitter, channel and receiver.
Functionally, the transmitter changes the message signal into a form suitable for transmission over the
channel, the channel is the physical medium that connects the transmitter and receiver, and the
receiver processes the channel output to produce an estimate of the message signal for a user.

Figure 1.1 Block diagram
representation for the system
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Massage Transmitted Received Estimate of
signal . X signal . signal i message signal
———| Transmitter Channel Receiver f———

Figure 1.2 Basic structure of a communication system

1.3 What Is Signal Processing?

Signal processing is concerned with the representation, transformation, and manipulation of signals
and the information they contain. For example, we may wish to separate two or more signals that have
been mixed together, or we may want to enhance some signal components or estimate some
parameters of a signal model. In communication systems, it is commonly necessary to do
pre-processing such as modulation, signal conditioning, and compression prior to transmission over a
channel and then to post process at the receiver. The technology for signal processing was almost
exclusively continuous-time analog technology until 1960s. The rapid development of digital
computers and micro processors together with some important theoretical progress such as the fast
Fourier transform (FFT) algorithm caused a major shift to digital technologies, giving rise to the field
of digital signal processing.

1.4 Classification of Signals

In this textbook, we will restrict our attention to one-dimensional signals which are defined as
single-valued functions of independent variable time. “Single-valued” means that for every specified
instant of time there is a unique value of the function except for the discontinuities of the function.
The value of a signal at a specified time is called its amplitude. The variation of the amplitude as a
function of the independent time variable is called its waveform. The classification of signals is a
basic problem in the field of signal processing, because different types of signals concern with
different representations and processing methods.

1.4.1 Deterministic and Random Signals

According to the certainty of some features of general signals, the signals can be classified into two
sets, that is, deterministic signals and random signals.

1. Deterministic Signals

A deterministic signal is such a signal about which there is no uncertainty with respect to its value at any
specified time. Thus, a deterministic signal can be completely described by a known function of time.
A typical deterministic signal is a well-known sinusoidal signal, that is,
xc (1) = Asin(£2 ot + 6) (1.2)
where 4 is its amplitude, £2, is its angular frequency with units radians per second (rad/s), and 8 is its
initial phase with units radians (rad).

2. Random Signals

A random signal is such a signal about which there is uncertainty before it occurs. In other words, a
random signal is generated in a random fashion and cannot be predicted ahead of time. Thus, a
random signal cannot be described by a deterministic function. According to the theory of random
processes, such a signal may be viewed as one realization of an ensemble of signals, with each signal
in the ensemble having a different waveform. Moreover, each signal within the ensemble has a certain
probability of occurrence. The ensemble of signals is called a random process.

A typical random signal is the random initial-phase sinusoidal signal, that is,

x. (1) = Asin(2t + @) (1.3)
where the amplitude 4 and the angular frequency £2, are constants, and the initial phase¢ is a
random variable with a probability density function p(¢)=1/2n. Although the amplitude and
angular frequency of the signal are constants, the initial phase cannot be predicted before it is
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generated.
Another random signal is thermal noise generated in the amplifier of a radio or television
receiver. Its amplitude fluctuates between positive and negative values in a complete random fashion.

1.4.2 Continuous-Time and Discrete-Time Signals

According to the continuity of the independent time variable for signals, the signals can be classified
into two classes as follows.

1. Continuous-Time Signals

A signal x(¢) is said to be a continuous-time signal, if it is defined in the continuous-time domain.

However, it is not necessary for the amplitude of the signal to be continuous at any time instants. In
other words, a continuous-time signal may be undefined at a finite number of discrete time instants.
Furthermore, the continuous-time signals can be classified into two subclasses. One is the analog
signals whose time variable and amplitude are all continuous. Such a signal is shown in Figure 1.3(a).
Another is the quantized boxcar or stairstep signals whose time variable is continuous while its
amplitude takes discrete values with finite precision. Such a signal is shown in Figure 1.3(b).

2. Discrete-Time Signals

A discrete-time signal is defined only at discrete time instants. Thus, the independent variable of the
signal takes discrete values only, which are usually uniformly spaced on the time axis. However, the
amplitude of a discrete-time signal may take infinite-precision values or finite-precision values. A

discrete-time signal with discrete-valued amplitude represented by a finite number of digits is the
so-called digital signal.

x(1) x(7)

_0/' V t dol___ L 1 __[_|.LL =«

(a) (b)

Figure 1.3 Continuous-time signals: (a) an analog signal; (b) a quantized boxcar signal

A discrete-time signal is often derived from a continuous-time signal by sampling it at a uniform
rate, that is,

x(n) = x.(nT) = xc(Oi=pr, n=0,£1,%2,--- (1.4)
where T denotes the sampling period with units seconds (s), » denotes an integer that may assume
positive and negative values, however, it corresponds to time. Such a signal is shown in Figure 1.4(a),
where the amplitude values of the signal are assumed to be continuous, or infinitely precise. A

corresponding digital signal may be obtained by taking the quantized amplitude values of the signal in
Eq.(1.4), which is shown in Figure 1.4(b).

x(n) x(n)

(a) (b)
Figure 1.4 (a) A discrete-time signal; (b) a digital signal
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1.4.3 Periodic Signals and Nonperiodic Signals

A continuous-time signal x(¢) is periodic if and only if it satisfies
x(t)=x(t+Tp), for all ¢ (1.5)
where 7, is a positive number called the period of the signal with units seconds (s). Specifically, the
smallest value of T, satisfying Eq.(1.5) is referred to as the fundamental period of the periodic signal
x(¢) . Accordingly, the fundamental period 7|, defines the duration of one complete cycle of the
periodic signal x(7).
The reciprocal of the fundamental period T, is called the fundamental frequency of the periodic
signal x(¢) , which is denoted as
So=1/Ty (1.6)

with units hertz (Hz). It describes how frequently the periodic signal repeats itself. Therefore, the
fundamental frequency is also measured in cycles per second.

The fundamental angular frequency of the periodic signal x(¢#) with units radians per second
(rad/s) is defied by
0y =2nfy =21/ Ty 1.7
Since there are 27 radians in one complete cycle, €2, is often referred to simply as the frequency.
Any signal x(z) for which no value of 7, satisfies Eq.(1.5) is called a nonperiodic signal, or
aperiodic signal.
A discrete-time signal x(n) is said to be periodic if it satisfies
x(n)=x(n+ N), for all n (1.8)
where N is a positive integer called the period of the signal x(n). The smallest integer N for
which Eq.(1.8) satisfies is called the fundamental period of the periodic signal x(n) . The fundamental
angular frequency of the periodic signal x(n) , or simply, fundamental frequency with units radians is
defined by

@ =2n/N (1.9)
1.4.4 Energy Signals and Power Signals

It is well-known that the instantaneous power dissipated in a resistor with 1 ohm resistance is
represented as

p()=vi(®)/ R =v*(t) (1.10)
where v(7) is assumed to be the voltage across the resistor with units volts (V), with the result that the
instantaneous power p(t) is measured in watts (W). Equivalently, we have

p(t) =i* ()R =i*(1) (1.11)
where i(7) is the current flowing through the unit resistor (with 1 ohm resistance). In both cases, the
instantaneous power p(t) is equal to the square of the signal v(¢) or i(¢) for the unit resistor R. Thus, in

the signal analysis, it is customary to define the power of a signal in terms of the unit resistor,
regardless of whether a given signal x(¢) represents a voltage or a current.

Considering the above convention, we discuss the power and energy of different signals as
follows.

1. Aperiodic Continuous-Time Signals
For an arbitrary continuous-time signal x(#) which may be complex-valued, the instantaneous power
normalized to unit resistance is defined as

p®) = x@) (1.12)

with units watts . The total energy of the continuous-time signal x(f) is defined as
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' T/2 2 _ oo 2
E= lim j_m] (O de= [ | x(e)fde (1.13)
with units joules (J). Meanwhile, the average power of the signal is defined as
e 1 [2 5
P = lim [mq x(t)|dt (1.14)

with units watts.

2. Periodic Continuous-Time Signals

If x,(#) isa continuous-time periodic signal with period T;, then the nontrivial energy of the whole
signal is always infinite. However, the average power of the whole signal is equal to the average
power in any period of the signal, that is,

1 to+To 2
P=g |, Im@rdr (1.15)

where 1, is an arbitrary time constant. Particularly, for a real-valued signal x, (¢) , the square root of
the average power P is called the root mean-square value of the periodic signal.

3. Aperiodic Discrete-Time Signals
In signal processing field, the total energy of a discrete-time signal x(n), is conventionally defined as

E=) |x(@m)| (1.16)
It is measured in square volts (V*). The average power of the signal x(n) is defined as
. 1 M/2
P=lim —— > |x(n)[ (1.17)

MoeM+1,.57,,

In the field of electrical engineering, the discrete-time signal x(n) is generally obtained by sampling

a continuous-time signal x.(¢). The energy for such a discrete-time signal is meaningfully defined as
M/2

E= lim T > |x (D)= Ti|x(n)|2 (1.18)

n=-M1/2 n=—co
where 7 is the sampling period measured in seconds, which is assumed to be small enough. The
average power for such a signal is also computed by using the Eq.(1.17). However, its physically
meaningful units are given by watts (W).

4. Periodic Discrete-Time Signals

For a periodic discrete-time signal x, (»), the nontrivial energy of the whole signal is infinite, while

the average power of the signal is given by
N+ng—1

P=2 Y I%mF (1.19)
where N is the period of the signal and n, is an arbitrary integer. For the same reason, if the signal
x,(n) is derived from a continuous-time periodic signal x, (¢), then the average power represented in
Eq.(1.19) should be measured in watts (W).

In the field of signal processing, the classification of signals in terms of energy and power is very
useful. A signal is referred to as an energy signal if and only if the total energy of the signal satisfies
the condition

0<E<e (1.20)
so that the average power of the signal must be zero. A signal is referred to as a power signal if and
only if the average power of the signal satisfies the condition

0<P<oo (1.21)
this implies that the total energy of the whole signal must be infinite. Thus we conclude that the
energy and power classifications of signals are mutually exclusive.

It should be noted that a signal satisfying neither inequality (1.20) nor inequality (1.21) is neither
an energy signal nor a power signal.
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1.5 Overview of Digital Signal Processing

In this modern world we are surrounded by all kinds of signals in various forms. In practical
engineering, signals are carriers of information, both useful and unwanted. Therefore, extracting or
enhancing the useful information from a mix of conflicting information is a simplest form of signal
processing. Generally speaking, signal processing is an operation designed for extracting, enhancing,
storing, and transmitting useful information.

The signals that we encounter in practice are mostly analog signals, which vary continuously in
time and amplitude, are processed using electrical networks containing active and passive circuit
elements. This approach is known as analog signal processing (ASP). This processing can be roughly
described by the block diagram shown in Figure 1.5.

Analog input . Analog output The analog signal processing can be
——| Analog singal processor |———> . o 5 5
I0) yult) equivalently performed by digital signal processing

(DSP), which uses such a structure as shown in

Figure 1.5 Block diagram for analog signal 3 < p
processing Figure 1.6. The function of every block element in

Figure 1.6 is introduced below.

X0 x(n) o wn) yal)
— Prefilter Al Digital D/A Postfilter By
converter processor converter

Figure 1.6 Equivalent analog signal processing

(1) The prefilter or antialiasing filter is used to condition the analog signal x,(¢) to prevent
aliasing.

(2) The A/D (analog-to-digital) converter produces a stream of binary numbers, denoted by a
sequence x(n).

(3) The digital processor processes the binary data in terms of a designed signal processing
algorithm, which results in a stream of binary numbers, denoted by a sequence y(n).The digital
signal processor can represent a general-purpose computer, or digital hardware, and so on.

(4) The D/A (digital-to-analog) converter performs the inverse operation with respect to the A/D
converter. It produces a staircase waveform from a sequence y(n) of binary numbers, which is the
first step toward producing a desired analog output signal y, (7).

(5) The postfilter is an analog lowpass filter used to smooth out staircase waveform into a
desired analog signal y, (7).

Comparing above two approaches to process an analog signal, the DSP approach is more
complicated than the ASP approach. Therefore, one might ask a question: Why process analog signals
digitally? The answer lies on many advantages offered by the DSP.

A major drawback of ASP is its limited scope for performing complicated signal processing
applications. This translates into nonflexibility in processing and complexity in system designs. All of
those generally lead to expensive products. On the other hand, using a DSP approach, it is possible to
convert an inexpensive personal computer into a powerful signal processor. Some important
advantages of DSP approach may be as follows:

(1) Systems using the DSP approach can be developed using software running on a
general-purpose computer. Therefore, DSP is relatively convenient to develop and test, and the
software is portable.

(2) DSP operations are based essentially on additions and multiplications, leading to extremely
stable processing capability.

(3) DSP operations can easily be modified in real time, often by simple programming changes,
or by reloading registers.

(4) DSP has lower cost due to VLSI technology, which reduces costs of memories, gates,
microprocessors, and so on.

The principal disadvantage of DSP is the speed of operations, especially at very high frequencies.
Primarily due to the above advantages, DSP is now becoming a first choice in many technologies and
applications, such as consumer electronics, communications, wireless telephones, and medical imaging.



Discrete-Time Signals and
Systems

In this chapter, we first discuss the time-domain representation of a discrete-time signal as a sequence
of numbers. We then describe some basic discrete-time signals or sequences that play important roles
in the time-domain characterization of arbitrary discrete-time signals and discrete-time systems. A
number of basic operations on discrete-time signals are discussed next. The discussion of
discrete-time systems begins with the mathematical definition of discrete-time systems and the
properties of such systems, including the linearity, time-invariance, stability and causality of the
systems. We will concentrate our particular attention on the time-domain representation of linear
time-invariant (L'TI) systems through the linear convolution sum. Finally, we conclude this chapter
with the discussion of a class of linear time-invariant systems represented by linear
constant-coefficient difference equations and their solutions.

2.1 Discrete-Time Signals: Sequences

As mentioned earlier, a discrete-time signal x(n) is represented as a sequence of numbers called

samples, where » is the independent variable of the signal and takes integer numbers only.
Therefore, a discrete-time signal is actually a set of numbers with an integer index » and can be
mathematically denoted as

{x(n)}, —cc<n<oo 2.1
Strictly speaking, x(n) represents the nth element of the set, or the nth sample of the discrete-time
signal. However, it is customary to use x(n) to denote the sequence, if it does not cause confusion in
concerned contexts. For example, a discrete-time signal can be formally expressed as

{x(m)}={1/2)"}, n=0 ' (2.2)

Of course, we would like to express this signal into
<) ={(1/2)", n=0
0, n<0
Here the notation x(n) represents the whole discrete-time

(2.3)

signal, or the sequence representing the signal. Its nth sample A0
for n>0 has the wvalue (1/2)". The graphical 11

. .. .. o o " .
representation of this signal is illustrated in Figure 2.1, which 2 A 1
is also called the waveform of the signal. T 2 %

In practical engineering, a discrete-time signal x(n) is o 1 2 3 n
often obtained by periodically sampling a continuous-time Figure 2.1 Graphical representation of a
x. (1) at uniformly spaced time points, which leads to discrete-time signal

x(n)=x.(nT)=x.()|=nr, n=0,£1,£2,-- (2.4)

where the time spacing 7 between two consecutive samples of the discrete-time signal is called the
sampling interval or sampling period, with units seconds (s). The reciprocal of the sampling interval is
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called the sampling frequency with units hertz (Hz), that is, f; =1/7 (Hz). Here, we have assumed

that the sampling interval 7 is small enough to satisfy the recovery condition of original
continuous-time signal x.(f) from the samples of the sequence x(n), which is stated as the

sampling theorem to be discussed in Chapter 4.
In the analysis of discrete-time signal processing systems, sequences are manipulated in several basic
ways. We now briefly describe basic operations on sequences as follows.

1. Sample Addition
Let x;(n) and x;(n) denote a pair of sequences. The sum sequence y(n) obtained by a sample-by-
sample addition is defined by
y(n) = xi(n)+ x2(n) (2.5)
2. Sample Multiplication
Let x;(n) and x,(n) denote a pair of sequences. The product sequence y(#) obtained by a sample-
by-sample multiplication is defined by
y(n) = x(n)x2(n) (2.6)
3. Scalar Multiplication
If x(n) is a sequence, then a scaled sequence y(n) resulted from a scalar multiplication of x(n)
is defined by
y(n) = cx(n) 2.7)

where c¢ i1s an arbitrary constant. Clearly, it is a special case of the sample multiplication. Here, one out
of two sequences has constant sample values, c.

4. Sample Accumulation

This differs from the sample addition operation. It adds all sample values of sequence x(n), starting
from —oo to n, thatis,

n

y(n) = x(k) (2.8)

k=—oc0

where the resulting sequence y(n) is called the accumulated sequence of x(n).

(112)" nz0
05 n<0

Solution: From the definition in Eq.(2.8) and the given sequence in this probiem, we know
thatif n<0, then y(n) 0, andif n>0, then ~

Determme 1ts accumulated sequence‘

Example 2.1 Let x(n) {

a(n)-‘Z x(k) = 2(1/2) =2-(1/2)", for n%()

k=—oo

Thus, the desired sequence is given by e
s {2 (1/2)" n>0
60 ol hell
5. Time Shifting
Let x(n) denote a sequence. The time-shifted version of x(n) is defined by
y(n) =x(n—no) (2.9)
where ng is an integer. If n is positive, then the sequence y(n) is obtained by shifting each

sample of x(n) to the right with n, sample intervals. If 7, is negative, then each sample of x(n)
is shifted to the left with |ny| sample intervals.



