ertlng Solid Code

TP

MG ERECIES NN

(HESChR)

[2€] Stephen A. Maguire ¥

Jolti?’%mxé%ﬁi

o 5 (RIBAR) FIVRHRESE

BT AR IHEI R B
© CiIEESEFHIME
Z ARiBH iR AL

POSTS & TELECOM PRESS

Writing Solid Code

- PR
B RRRCHE R

(HEXChi)

EHER&KE (CIP) 8iR

s, MERFER C 55 R = Writing Solid
Code: ZX/ (%) L FE/R (Maguire, S.A) 2 —LH:
AR H iRtt, 2009.2

ISBN 978-7-115-19316-2

I % 1.5 I.CHEH -BFEIT -2 N
TP312

o [B A AR CIPBE A (2008) 581911545

mERE

ik, BERMZTIR. EENKIEZAEFNHER FFR N FERGBRT, KBEFHE
e, NRIMTE . ABAIHT SAMEN EHES, R SEURE, DREFSFR
ERERNGR, BRMHAREBREL. Frpfpp @ B BN TREFZARLEL R .
ABETEBRBFITEARRE.

MR AS
mEER: AERERCEERD ({IW)

L [3%] Stephen A. Maguire
FiLgEE S

o NSRS R AT TR XR S R4S
fiE% 100061 HFH 315@ptpress.com.cn
Rk http://www.ptpress.com.cn

Jb B0k B L E R PR 2 R ENRI
& FF4s: 800X1000 1/16
Ep3k: 17.75
FH: 341TF 20094E2 A1/
Ep¥k: 1-3 oooft 20094 2 B AL 1 EDKI

ZEMARZICE B 01-2008-5502%5
ISBN 978-7-115-19316-2/TP
EHr: 45.0070
EEREHLE: (01088593802 ENERMMALE: (010)67129223
R#NEHLE: (010)67171154

e —————

kit B 7= BA

© 1993 by Microsoft Corporation. All right reserved. Original edition, entitled Writing Solid
Code by Stephen A. Maguire, ISBN 9781556155512, published by Microsoft Press in 1993.

This reprint edition is published with the permission of the Syndicate of the Microsoft Press.

Copyright © 1993 by Stephen A. Maguire.

THIS EDITION IS LICENSED FOR DISTRIBUTION AND SALE IN THE PEOPLE’S
REPUBLIC OF CHINA ONLY, EXCLUDING HONG KONG, MACAO AND TAIWAN, AND
MAY NOT BE DISTRIBUTED AND SOLD ELSEWHERE.

25 JR AR E TR AR A AR

A BIRSCE AR K AR A REF AR MK MR . REHREBEFA, K
BUMEM T X ERIRPDEE AN

B AU RAEPENRIEE (B, WIMEITBIRASERX R EANERTT.

W, RELT.

To my wife, Beth,
and to my parents, Joseph and Julia Maguire,
. for all their love and support.

FOREWORD

[first met Steve Maguire in 1986, when we hired him to work on Macintosh
Excel. He impressed me then as a particularly conscientious and dedicated
programmer. At that time, I was the development manager for Microsoft
Multiplan, Word, and Chart. The company was growing rapidly, and so
were problems with both our products and our development process. Steve
was instrumental in solving some of those problems and with this book be-
comes the recorder of many good practices we developed in response to
those problems. But I'm getting ahead of myself.

I was hired by Bill Gates and Charles Simonyi in 1981 to work in
Microsoft’s business applications group. Back then, that meant 7 program-
mers working on one business application—Microsoft Multiplan. Another
30 programmers were working on our language and operating systems
products. The rest of the 100 people in the company were in technical writ-
ing, sales, marketing, and administration. At that time, all 7 Multiplan pro-
grammers were crammed into one large room in an office building in
downtown Bellevue, Washington. We weren’t even in the same building
with the rest of the developers, who were working on MS-DOS and Basic.
They were two blocks away. But that wasn't a big problem. We were a small
company with a vision of what we wanted to accomplish: a computer on
every desk running Microsoft software.

The system we used to develop Multiplan was pretty sophisticated for
PC development in those days. We wrote the core product in C—most pro-
grams then were written in assembly or Pascal. We did our editing and
compilation on a PDP-11 running Unix. The C code was compiled into
p-code and downloaded to the target machines. We had to build p-code
interpreters for each microprocessor in use at that time.

By the end of 1983, we had interpreters working for the 8080/Z80, the
6502, the Z8000, the 68000, the TI 99/a, and the 8086. And by that time, we
had application specialists working on each of our primary business appli-
cations—a spreadsheet, a word processor, a simple database record man-
ager, and a business graphics package. We had assembly language and

WRITING SOLID CODE

environment specialists working on the interpreters. We also had a group
working on the compiler and development tools. Except for a small depen-
dence on the minuscule operating system services, the 30-member applica-
tion development team was self-contained, building its own development
tools, compilers, interpreters, and product code.

In 1981, our primary focus had been on shipping original equipment
manufacturer products. We would work with an OEM, customizing our
products to fit the OEM’s machine and sales channels. Then we would ship
the OEM a disk and photo-ready copies of the manual. The OEM would do
all of the manufacturing of the product, the sales, and the support.

By 1982, we had started to switch to a retail emphasis. The OEM focus
had allowed us to travel light. We’d needed only a few marketing folks to
sell the products to the OEMs, a few developers to build the products, and a
few technical writers to write the manuals. Testing, project management,
product manufacturing, product shipping, product support, and sales had
been provided by the OEM. With the switch to a retail focus, we had to
develop all of these specialized product development and support func-
tions at Microsoft.

Early on, we developed products for IBM and Apple PCs. Our first
retail products were Multiplan for IBM-DOS and Multiplan for the Apple I
But we still developed many OEM products. We worked on spreadsheet,
word processing, business graphics, and database products for Unix, Xenix,
the TI 99/a, the Tandy M100, the MSX (an 8-bit home computer in Japan),
non-IBM-compatible MS-DOS machines, the Commodore 64, the Atari, the
Apple III, the Apple Lisa, the Apple Macintosh, OS/2, Windows, and many
other specialized hardware environments. Some of these environments had
several variants themselves. Before the IBM-compatible became the domi-
nant machine, we’d had to tailor our applications for every MS-DOS ma-
chine that was built. We’d had a different product for the Tandy, the Wang,
the Paradyne, the Consumer Devices, the Eagle, the Victor, the Olivetti, the
DEC Rainbow, and many other MS-DOS machines. While dealing with this
system specialization, we were developing numerous specialized foreign
language versions of our business applications.

Our early products were only English language versions. Today we
build over 30 language products that we adapt, or more often tailor, to the
target language/culture, including Arabic, Australian, Bahas, Chinese,
Czechoslovakian, Danish, Dutch, English (UK), Finnish, French, French

FOREWORD

Canadian, German, Greek, Hebrew, Honguel (Korean), Italian, Japanese,
~ Norwegian, Portuguese, Russian, Spanish, Swedish, Turkish, US English,
and more.

By 1985, some of the complexity of product development had been
eliminated by the success of the IBM PC. The variety. of video standards
we’d had to support had been reduced to the primary IBM-compatible
modes (CGA and monochrome). But video support started to get out of
hand again around 1988. IBM had developed the EGA video extensions,
then they developed the VGA, and it was soon followed by the SVGA and
all of its variants.

Support for the other hardware peripherals also grew more complex.
We had to support over 200 variations of laser and dot matrix printers. For-
tunately, input devices didn’t get too varied. There was the IBM standard
keyboard and the extended keyboard. And most pointing devices followed .
the Microsoft mouse standard.

Today a lot of the complexity and variations in the hardware have
simply gone away or have been incorporated into one complex but com-
plete interface. We have to build products for only two primary systems—
Windows and the Mac. But new levels and magnitudes of complexity have
emerged to replace the complexities of hardware support. Now developers
need to be conversant with message-based GUI programming and with
object-oriented design and programming. They need to support product
extensibility through Object Linking and Embedding (OLE) in Windows
and through Publish and Subscribe on the Mac. And they need to support
consistent access to features across product families and consistent methods
of programmability across product families.

In 1984, the increase in the complexity of our products and the high
standards involved in building retail products led us to start up a quality
assurance group. We called this group Testing in 1984, and we call this
group Testing today, although our testing group has grown from 5 testers
in 1984 to over 500 testers. Our testing group today is really an advanced
quality assurance group that looks out for our customer’s interests.

Before we’d had a testing group, the business applications developers
had relied on the OEM customer to test the product to find bugs. This ar-
rangement worked out well until we started to ship the retail product di-
rectly to end users, before we’d shipped it to any OEM customers. For an
interval, before the testing group was going strong, the developers had to

WRITING SOLID CODE

test the retail products themselves. The developers who lived through that
experience learned that they had to be very careful not to introduce bugs as
they wrote and debugged the code. They found out the hard way how
costly it was to release a product that had bugs in it.

But as the testing group got bigger, the development groups got more
and more dependent on the testing group to find bugs. The development
groups soon adopted the attitude that the testing group was responsible for
finding all bugs. This led to such serious problems—slipped schedules,
buggy features, incomplete features, even canceled products—that some-
thing had to be done. Many developers felt no shame if bugs were found in
their code after the product had shipped. They’d ask indignantly, “Why
didn’t Testing find that bug before we shipped?” Testing should have re-
sponded, “Why did you put that bug in the product in the first place?”

Eventually, the developers began to realize that Testing can never find
all of the bugs in a piece of software. The bugs might be in the design, or in
the specifications, or in the analysis of the customer’s needs. And testers
can’t do complete code coverage or path coverage in their tests. Bugs might
be hidden in obscure and rarely tested code. Bugs can be temporarily
masked by the operations of other parts of the program—or by the testing
environment. These are the kinds of bugs that testers have a hard time find-
ing. Because of these factors, a testing group will usually find only 60 per-
cent of the bugs in a product. '

The developers can bring more knowledge and tools to reviewing and
testing the code. When the developers set their minds and their tools to it,
they can find over 90 percent of the bugs in the code. If the developers give
the responsibility for finding the bugs to the testers, the users of the product
will find 40 percent of the bugs. If Development and Testing both work to
find the bugs, the users will end up finding less than 4 percent of the bugs.
And that 4 percent could be found by the users during the beta test of the
product.

In early 1989, many of the development managers and leads met to
discuss the problem. Out of that meeting came a realization and an attitude
change: Finding and fixing bugs was Development’s responsibility. Devel-
opment had been letting bugs slip past them. Now it became their responsi-
bility again to prevent bugs from being released to Testing and then on to
the customers. The development teams set off on the goal of having a
“nearly shippable product every day.” This means that when a feature is

FOREWORD

marked complete, any bugs found in it will have to be fixed before any new
work is attempted. Work in progress will be brought to a standstill if seri-
ous bugs are found in features marked complete.

We labeled this new attitude “zero defects.” The code would be built,
reviewed, and tested by Development and delivered to Testing with zero
defects. Fortunately, a few of the development groups had already been ex-
perimenting with many of the techniques for developing zero defect code.
We started to actively share those techniques among all the development
groups. Steve Maguire did a lot of troubleshooting from group to group in
those days, and he has set down many of our techniques for writing solid,
bug-free code in this book. ,

Microsoft improved and is always improving its product develop-
ment process along with its development tools. In 1981, there were the de-
velopers, the writers of the manuals, and small sales, marketing, and
administrative groups. Now we have product marketing, channel market-
ing, sales, support, testing, user education (technical writing and publish-
ing), program management, and many other specialists. With today’s
complex structure of special groups at Microsoft, we want to ensure that the
techniques for developing solid code aren’t lost, misunderstood, or forgot-
ten. Steve Maguire’s book should help both us and you keep those tech-
niques alive.

Today I'm the director of development and testing for Microsoft. Part
of my job is to inventory and disseminate best practices. I'm very grateful to
Steve for taking the time to write a book so enjoyable to read that will help
managers and programmers develop world-class code. Steve has captured
and described many of the techniques that are used at Microsoft to develop
solid, shippable code. It will become recommended reading for all
Microsoft programmers.

David M. Moore

Director of Development, Microsoft
Redmond, Washington

January 1993

PREEACE

In 1986, after 10 years of consulting and working for small companies, I
went to work for Microsoft specifically to get experience in writing Macin-
tosh applications. I joined Microsoft’s Excel team, the group responsible for
the company’s graphical spreadsheet application.

I’'m not sure what I was expecting the code to look like—glamorous or
elegant, I suppose. What I found was plain, everyday code, nothing much
different from what I'd seen before. To be sure, the spreadsheet had a won-
derful user interface—it was much easier and more intuitive to use than any
of the character-based spreadsheets of the time. But what impressed me
even more was the implementation of an extensive debugging system built
into the product.

The system automatically alerted programmers and testers to bugs,
much the way warning lights in the cockpit of a Boeing 747 alert pilots to
failures—the debugging system was not so much testing the code as it was
monitoring it. None of the concepts in the debugging system were new, but I
was struck by the sheer extent to which they were employed, and by how
effective the system was in detecting bugs. It was an eye-opener. It didn’t
take me long to discover that most of Microsoft’s projects had extensive in-
ternal debugging systems—and that there was a heightened awareness
among the programmers of bugs and their causes.

Iworked on Macintosh Excel for two years before I left to help another
Microsoft group, whose code was turning up with a higher than usual num-
ber of bugs. I found that during the two years in which I had been focused
on Excel, Microsoft had tripled in size and many of the programming con-
cepts that were well-known among the older groups had not spread to the
newer groups during the rapid growth. Instead of having a heightened
awareness of error-prone coding practices, the newer programmers had a
normal awareness—about what I'd seen among programmers in the years
before I joined Microsoft.

WRITING SOLID CODE

About six months after I'd moved to the new group, I was talking to a
fellow programmer and mentioned that somebody should document the
concepts behind writing bug-free code so that the principles could spread to
the newer groups. The other programmer looked at me and said, “You
don’t seem to mind writing documents; why don’t you write down the de-
tails? In fact, why don’t you write a book and see if Microsoft Press will
publish it? After all, none of this information is proprietary; it simply makes
programmers more aware of bugs.”

I didn’t give that suggestion much thought then, mainly because I
didn’t have the time and I'd never written a book before—the closest I'd
come to authorship was cowriting a programming column for Hi-Res Maga-
zine in the early 1980s. Not quite the same thing.

But as you can see, the book did get written, and for a simple reason:
In 1989 Microsoft canceled an unannounced product because of a runaway
bug list. Now, runaway bug lists weren’t new—several of Microsoft’s com-
petitors had already canceled projects because of them. But this was the first
time that Microsoft had ever canceled a project for that reason. It was also
the latest in a string of buggy products, and management had finally said,
“Enough is enough” and taken a series of steps to get bug counts back down
to their previous levels. Still, nobody was given responsibility for putting
the details down on paper.

By this time the company was nine times larger than when I'd started,
and I didn’t see how the company’s coding could return to its previous low
bug levels without explicit, recorded guidelines, particularly when I consid-
ered the growing complexity of Windows and Macintosh applications.
That’s when I decided, finally, to write this book.

Microsoft Press agreed to publish it.

And here it is.

I hope you enjoy reading the book. I've tried to keep it informal and
entertaining.

ACKNOWLEDGMENTS

I'd like to thank everybody at Microsoft Press who helped make this book a
reality, and in particular the two people who held my hand throughout the
writing process. First I would like to thank Mike Halvorson, my acquisi-
tions editor, for letting me take the project at my own speed and for pa-

PREFACE

tiently answering this first-time book author’s many questions. I would es-
pecially like to thank Erin O’Connor, my manuscript editor, who gave me
early feedback on the chapters, and without whose help this book simply
would not exist. Erin also encouraged me to relax into my own style, and it
certainly didn’t hurt that she laughed at the text’s little jokes. Jeff Carey
gave the ideas and the code a good going over, and Kathleen Atkins made
many good suggestions.

I'd also like to thank my father, Joseph Maguire, who in the mid-1970s
introduced me to those first microcomputers: the Altair, the IMSAI, and the
So01-20. He is responsible for getting me hooked on this business. Evan
Rosen, with whom [worked at Valpar International from 1981 to 1983, was
a great influence on me, and his knowledge and insight show up in this
book. Paul Davis, with whom I've had the pleasure to work during the past
10 years on various projects all over the country, has also shaped my think- .
ing in significant ways.

I'd like to thank all the people who took the time to read through draft
copies of this book to give me technical feedback: Mark Gerber, Melissa
Glerum, Chris Mason, Dave Moore, John Rae-Grant, and Alex Tilles. I'd
especially like to thank Eric Schlegel and Paul Davis for not only reviewing
draft copies of the book but also giving me early help in hammering out
the details.

Seattle, Washington
October 22,1992

INTRODUCTION

Several years ago I picked up a copy of TEX: The Program, by Donald Knuth,
and what I read in the preface astounded me:

I believe that the final bug in TEX was discovered and removed on
November 27, 1985. But if, somehow, an error still lurks in the code, I
shall gladly pay a finder’s fee of $20.48 to the first person who discov-
ers it. (This is twice the previous amount, and I plan to double it again
in a year; you see, I really am confident!)

I have no idea whether Knuth paid anybody $20.48 or even $40.96;
that’s not important. What is important is the confidence Knuth had in the
quality of his code. How many programmers do you know who would seri-
ously claim that their programs are totally bug-free? How many would
publish such a claim and back it up with a finder’s fee?

Programmers could make such claims if they truly believed that their
testing groups had found all their bugs. But that’s the problem. How many
times have you heard programmers say, “I hope Testing has found all the
bugs” right before the code is boxed, shrink-wrapped, and shipped to deal-
ers? They cross their fingers and hope for the best.

Programmers today aren’t sure their code is bug-free because they’ve
relinquished responsibility for thoroughly testing it. It's not that manage-
ment ever came out and said, “Don’t worry about testing your code—the
testers will do that for you.” It’s more subtle than that. Management expects
programmers to test their code, but they expect testers to be more thorough;
after all, that’s Testing’s full-time job.

The purpose of this book is to show how programmers can take back
the responsibility for writing bug-free code. That doesn’t necessarily mean
writing perfect code the first time—it means creating a product that’s bug-
free before it first goes into testing. Some programmers may laugh incredu-
lously at such an idea, but this book demonstrates techniques and provides
guidelines that programmers can use to work toward that goal.

WRITING SOLID CODE

THE TWO CRITICAL QUESTIONS

The most critical requirement for writing bug-free code is to become at-
tuned to what causes bugs. All of the techniques and guidelines presented
in this book are the result of programmers asking themselves two questions
over and over again, year after year, for every bug found in their code:

® How could I have automatically detected this bug?
& How could I have prevented this bug?

The easy answer to both questions would be “better testing,” but
that’s not automatic, nor is it really preventive. Answers like “better test-
ing” are so general they have no muscle—they’re effectively worthless.
Good answers to these questions result in specific techniques that eliminate
the kind of bug you've just found.

This book is devoted to techniques and guidelines that have been
found to reduce or completely eliminate entire classes of bugs. Some of its
points smack right up against common coding practices, but before dis-
missing them with “everybody breaks that guideline,” or “nobody does
that,” stop and think it through for yourself. If “nobody does that,” why
not? Make sure the reasons are still valid. Practices that made sense when
FORTRAN was the hot new language may not make sense now.

That’s not to say that you should blindly follow the guidelines in this
book. They aren’t rules. Too many programmers have taken the guideline
“Don’t use goto statements” as a commandment from God that should
never be broken. When asked why they’re so strongly against gotos, they
say that using goto statements results in unmaintainable spaghetti code. Ex-
perienced programmers often add that goto statements can upset the
compiler’s code optimizer. Both points are valid. Yet there are times when
the judicious use of a goto can greatly improve the clarity and efficiency of
the code. In such cases, clinging to the guideline “Don’t use goto statements”
would result in worse code, not better.

The guidelines in this book are no different: They’re meant to be fol-
lowed most of the time, and they’re meant to be broken when you can get
better results by breaking them.

In addition to the guidelines and techniques, most of the chapters in
this book contain a section at the end called “Things to Think About.” Ques-
tions in this section of a chapter explore new areas that haven’t been cov-

INTRODUCTION

ered in the earlier parts of the chapter. The questions aren’t exercises—they
don't test your comprehension of the chapter. I've tried to introduce at least
one new concept in every question, and I've provided a complete set of an-
swers in order to pass on as much information as possible. If you usually
skip over exercises, consider reading the answers in Appendix C so that
you won't miss any of the guidelines or techniques I’ve introduced there.

Building atop Existing Foundations

Programmers who have been using C for a while know that they should use
parentheses around arguments in macro definitions; they know that strings
have unseen nul characters; they know that C arrays start with element 0,
not 1; and they know that you must use break statements to prevent switch
cases from falling into each other. These and other misunderstandings
about the C language are common sources of bugs, but you won't find these
bugs under discussion in this book unless such discussion is part of another
point I'm making. I have tried to focus on the little-known, or rarely pub-
lished, techniques for writing bug-free code, techniques that you won’t usu-
ally find in programming textbooks or hear about in programming courses.

Nor have I tried to rehash guidelines already covered so well in
The Elements of Programming Style, the programming classic written by Brian
Kernighan and P.]. Plauger. Although Kernighan and Plauger use FORTRAN
and PL/I in their examples, their guidelines—with a few exceptions—are
applicable to any programming language, including C. Writing Solid Code
builds on the groundwork laid by The Elements of Programming Style and
follows a similar format.

Finally, although this book is written for professional programmers
working on real projects with real deadlines, it's also suitable for students in
advanced C programming courses. Few students will ever work on a com-
piler once they finish their compiler course, but all will have to focus on
writing bug-free code. It’s my hope that this book will help give students
the skills they’ll need to write solid, production quality code once they
graduate.

WRITING SOLID CODE

WHAT'S A “MACINTOSH"”?

Sometimes it almost seems that a book won’t be taken seriously unless it
mentions the PDP-11, the IBM 360, or some other old piece of hardware. So
there, I've mentioned them, and I won’t mention them again in this book.
The systems you will hear a lot about in this book are MS-DOS, Microsoft
Windows, and especially the Apple Macintosh—because those are the sys-
tems I've written code for most recently.

You'll also hear a lot about the history of the Microsoft Excel and
Microsoft Word applications in this book. Excel is Microsoft’s graphical
spreadsheet, originally written for the Macintosh and later significantly re-
written, cleaned up, and enhanced for Windows.

Throughout the book, I talk about my experiences as a Macintosh
Excel programmer, but I must confess that I spent most of my time either
porting Windows code to the Macintosh sources or implementing look-
alike features that Windows Excel already had. I had little to do with the
phenomenal success of the product.

My only strategic contribution to Macintosh Excel was to convince
Microsoft to kill it, and to instead build the Macintosh version directly from
the much-improved Windows version’s sources. Macintosh Excel 2.2 was
the first version based on Windows Excel, sharing 80% of the code with its
sibling. This was great for Macintosh Excel users because with the 2.2 re-
lease they saw a big jump in features and quality.

Word is Microsoft’'s word processing application. Actually, there are
three versions of Word: Word for MS-DOS, which is character-based; Word
for the Macintosh; and Word for Windows. As I write, the three products
are still built from separate sources, but the versions are similar enough that
most users can move among them without much difficulty. Eventually, all
versions of Word will be built from common sources. The work is in
progress. '

WHAT ABOUT THE CODE?

You don’t need to be an MS-DOS, Microsoft Windows, or Apple Macintosh
expert to follow the book’s code—the code is written in straightforward C
that should compile and run with any ANSI C development system.
However, if you're a mainframe or minicomputer programmer with-
out much experience on microcomputers, be aware that protected memory
support is still rare in microcomputer operating systems. You can read and

