Methods in ENZYMOLOGY

Volume 436
Globins and Other Nitric
Oxide-Reactive Proteins,
Part A

Edited by
Robert K. Poole

HUNDRED AND THIRTY-SIX

METHODS IN **ENZYMOLOGY**

Globins and Other Nitric Oxide-Reactive Proteins, Part A

FDITFD BY

ROBERT K. POOLE

Department of Molecular Biology and Biotechnology University of Sheffield

Sheffield, United Kingdom

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright © 2008, Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher's consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (www.copyright.com), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2008 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. 0076-6879/2008 \$35.00

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier. com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions.'

For information on all Elsevier Academic Press publications visit our Web site at www.books.elsevier.com

ISBN-13: 978-0-12-374277-3

PRINTED IN THE UNITED STATES OF AMERICA 08 09 10 11 9 8 7 6 5 4 3 2 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID

Sabre Foundation

METHODS IN ENZYMOLOGY

Editors-in-Chief

JOHN N. ABELSON AND MELVIN I. SIMON

Division of Biology California Institute of Technology Pasadena, California

Founding Editors

SIDNEY P. COLOWICK AND NATHAN O. KAPLAN

METHODS IN ENZYMOLOGY Globins and Other Nitric Oxide—Reactive Proteins, Part A

CONTRIBUTORS

Rubina G. Aga

Department of Chemistry, King's College London, London, United Kingdom

Michael Angelo

Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana

Pedro Aparicio-Tejo

Instituto de Agrobiotecnologia, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Nararre, Spain

Idoia Ariz

Instituto de Agrobiotecnologia, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Nararre, Spain

Raúl Arredondo-Peter

Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico

Paolo Ascenzi

National Institute for Infectious Diseases IRCCS Lazzaro Spallanzani, Rome, Italy, and Department of Biology and Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, Rome, Italy

Iñigo Auzmendi

Instituto de Agrobiotecnologia, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Nararre, Spain

Luca Bargelloni

Department of Public Health, Comparative Pathology, and Veterinary Hygiene, University of Padova, Legnaro, Italy

S. Van Berloo

DEMO, Delft University of Technology, Delft, The Netherlands

Alberto Boffi

Department of Biochemical Sciences, University of Rome La Sapienza, Rome, Italy

Christian J. T. Bollinger

Institute of Microbiology, ETH Zürich, Zürich, Switzerland

Martino Bolognesi

Department of Biomolecular Sciences and Biotechnology CNR-INFM, University of Milan, Milan, Italy

Alessandra Bonamore

Department of Biochemical Sciences, University of Rome La Sapienza, Rome, Italy

Lindsay J. Cole

Department of Biology, University of York, Heslington, York, United Kingdom

Guo-Qiang Chen

Multidisciplinary Research Center, Shantou University, Guangdong, China

Hazel A. Corker

Syntopix Group Plc, Institute of Pharmaceutical Innovation, University of Bradford, Bradford, United Kingdom

Ian R. Davies

World Precision Instruments Limited, Aston, United Kingdom

Heinz Decker

Institute for Molecular Biophysics, Johannes Gutenberg University, Mainz, Germany

Agnes Dettaï

UMR, Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France and Institute of Protein Biochemistry, CNR, Naples, Italy

Sylvia Dewilde

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium

Alexander D. Frey

Institute of Microbiology, ETH Zürich, Zürich, Switzerland

Paul R. Gardner

Department of Chemistry, University of Dayton, Dayton, Ohio

Verónica Garrocho-Villegas

Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico

Antonio Di Giulio

Department of Science and Biomedical Technology, University of L'Aquila, L'Aquila, Italy

Sara Goldstein

Department of Physical Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel

Contributors xvii

Bridget Gollan

Centre for Molecular Microbiology and Infection, Department of Infectious Diseases, Imperial College of Science, London, United Kingdom

Vera L. Gonçalves

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal

Sabarinathan Kuttalingam Gopalasubramaniam

Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico

Puspita Halder

Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa

Mark S. Hargrove

Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa

Alfred Hausladen

Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana

Nadja Hellmann

Institute for Molecular Biophysics, Johannes Gutenberg University, Mainz, Germany

Robert D. Hill

Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada

Martin N. Hughes

Royal Free and University College Medical School, Centre for Hepatology, London, United Kingdom

Martin N. Hughes

Centre for Hepatology, Royal Free and University College Medical School, Centre for Hepatology, London, United Kingdom

Wilhelmina M. Huston

Department of Biology, University of York, Heslington, York, United Kingdom

Abir U. Igamberdiev

Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada

Andrea Ilari

CNR Institute of Molecular Biology and Pathology, University of Rome La Sapienza, Rome, Italy

xviii Contributors

Pauli T. Kallio

Institute of Microbiology, ETH Zürich, Zürich, Switzerland

J. H. Kattenberg

Section of Enzymology, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands

Laurent Kiger

Le Kremlin-Bicetre, France

Taija Koskenkorva

Institute of Microbiology, ETH Zürich, Zürich, Switzerland

Olga V. Kosmachevskaya

A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia

Jay R. Laver

Academic Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom

Christophe Lechauve

Le Kremlin-Bicetre, France

Guillaume Lecointre

UMR, Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, France and Institute of Protein Biochemistry, CNR, Naples, Italy

Megan E. S. Lewis

Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom

Beth Y. Lin

Biology Department, Brookhaven National Laboratory, Upton, New York

Michael C. Marden

Le Kremlin-Bicetre, France

Lelio Mazzarella

Institute of Biostructures and Bioimaging, CNR and Department of Chemistry and Consorzio Bioteknet, University of Naples Federico II, Naples, Italy

Kirsten Mees

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium

Gabor Merényi

Department of Chemistry, Nuclear Chemistry, The Royal Institute of Technology, Stockholm, Sweden

Mario Milani

Department of Biomolecular Sciences and Biotechnology CNR-INFM, University of Milano, Milan, Italy

Luc Moens

Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium

James W. B. Moir

Department of Biology, University of York, Heslington, York, United Kingdom

lose F. Moran

Instituto de Agrobiotecnologia, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Nararre, Spain

Marco Nardini

Department of Biomolecular Sciences and Biotechnology CNR-INFM, University of Milano, Milan, Italy

Enrico Negrisolo

Department of Public Health, Comparative Pathology, and Veterinary Hygiene, University of Padova, Legnaro, Italy

Lígia S. Nobre

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal

Catherine Ozouf-Costaz

Department Systematics and Evolution, Paris, France

Elio Parisi

UMR, Départment Systématique at Evolution, Merríum National d'histoire Naturelle, Paris, France, and Institute of Protein Biochemistry, CNR, Naples, Italy

Nina Pastor

Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico

Tomaso Patarnello

Department of Public Health, Comparative Pathology, and Veterinary Hygiene, University of Padova, Legnaro, Italy

Alessandra Pesce

Department of Physics CNR-INFM, and Center for Excellence in Biomedical Research, University of Genoa, Genoa, Italy

James L. Pickford

Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom

XX Contributors

Eva Pisano

Department of Biology, University of Genoa, Genoa, Italy

Robert K. Poole

Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom

L. A. M. Pouvreau

Section of Enzymology, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands

Guido di Prisco

Institute of Protein Biochemistry, CNR, Naples, Italy

Robert C. Read

Academic Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom

Austen F. Riggs

Section of Neurobiology, University of Texas at Austin, Austin, Texas

Genoveva Bustos Rivera

Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico

Selene Rol

Instituto de Agrobiotecnologia, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Nararre, Spain

Lígia M. Saraiva

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal

Konstantin B. Shumaev

A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia

Martha N. Simon

Biology Department, Brookhaven National Laboratory, Upton, New York

David J. Singel

Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana

Benoit J. Smagghe

Immune Disease Institute, Harvard Medical School, Boston, Massachusetts

Jonathan S. Stamler

Department of Medicine and Department of Biochemistry, Duke University Medical Center, Durham, North Carolina

Tânia M. Stevanin

Academic Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom

M. J. F. Strampraad

Section of Enzymology, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands

Alexander A. Timoshin

Russian Cardiology Scientific Research Complex, Moscow, Russia

Alexey F. Topunov

A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia

Estibaliz Urarte

Instituto de Agrobiotecnologia, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Pamplona, Nararre, Spain

Thomas L. Vandergon

Natural Science Division, Pepperdine University, Malibu, California

Anatoly F. Vanin

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia

Cinzia Verde

Institute of Protein Biochemistry, CNR, Naples, Italy

Alessandro Vergara

Institute of Biostructures and Bioimaging, CNR and Department of Chemistry and Consorzio Bioteknet, University of Naples Federico II, Naples, Italy

Serge N. Vinogradov

Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, Michigan

Paolo Visca

National Institute for Infectious Diseases IRCCS Lazzaro Spallanzani, Rome, Italy, and Department of Biology and Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, Rome, Italy

Luigi Vitagliano

Institute of Biostructures and Bioimaging, CNR, Naples, Italy

S. de Vries

Section of Enzymology, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands

PRFFACE

The genesis of ideas for these two volumes of *Methods in Enzymology* appears to be a talk (subtitled *Bloody Bacteria*) that I presented at the Agouron Institute meeting in Santa Fe, New Mexico, in April of 2006. The topic of the meeting was *Oxygen*, but my message was not how microbial hemoglobins manage oxygen but rather how the primary function of many such hemoglobins is nitric oxide detoxification. Despite my straying from my brief, John Abelson and Mel Simon generously invited me to consider editing a volume of *Methods in Enzymology* to cover these emerging aspects of such a well-studied protein family. Further discussion of the proposal at the XIVth International Conference on Dioxygen Binding and Sensing Proteins at Stazione Zoologica Anton Dohrn in beautiful Napoli later that year—warmly hosted by Cinzia Verde and Guido di Prisco—generated much interest and support. The result was a two-volume heterodimer: I hope cooperativity can be found in Volumes 436 and 437.

Just as the organizers of the Agouron Institute conference interpreted Oxygen with commendable flexibility, Methods in Enzymology has allowed some freedom in the definition of an enzyme. In 1994, when the topic Hemoglobins (Part C) was last covered explicitly in this series (Volume 232), some justification for labeling a hemoglobin as an enzyme might have been warranted. But as Maurizio Brunori pointed out in 1999 (Trends in Biochemical Sciences, 24, 158–161), the promotion of hemoglobin to the status of "honorary enzyme" had been conferred decades earlier by Monod, Wyman, and Changeux. In 2007, the idea that certain hemoglobins, even those not displaying allosteric heme–heme interactions, have enzymatic functions is well established; the most obvious examples being those hemoglobins that transform substrates into products, such as nitric oxide into nitrate.

Other topics covered in these volumes are not new to the *Methods in Enzymology* series either. The most recent coverage of overtly related topics was *Nitric Oxide (Part E)* in Volume 396 (2005) and *Oxygen Sensing* in Volume 381 (2004). I hope, however, that the particular juxtaposition of topics in these two volumes will draw attention to the intimate links between globins, their gaseous ligands (nitric oxide, oxygen, and carbon monoxide), and the sensing and detoxification of these biologically critical small molecules. There is a strong microbial flavor in these volumes,

xxiv Preface

reflecting some of the most exciting developments in recent years. Volume 436 deals with some chemical and analytical aspects of nitric oxide and methods for bacterial and archaeal hemoglobins, as well as diverse (especially "newer") hemoglobins in plants and animals. Volume 437 covers various non-hemoglobin nitric oxide-detoxifying proteins, sensors for gaseous ligands, advanced spectroscopic tools, and aspects of the functions of these proteins in microbial and plant physiology. In each volume, some chapters serve not as methodological recipes but short reviews to place the methods in a proper framework.

These volumes would not have been possible without the tremendous enthusiasm of so many colleagues, contributors, and friends around the world. I thank them all, and also Tari Broderick and Cindy Minor (Elsevier, San Diego, California), for their help and encouragement in leading these

volumes to a successful and timely outcome.

ROBERT K. POOLE

METHODS IN ENZYMOLOGY

VOLUME I. Preparation and Assay of Enzymes

Edited by Sidney P. Colowick and Nathan O. Kaplan

Volume II. Preparation and Assay of Enzymes

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME III. Preparation and Assay of Substrates Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME IV. Special Techniques for the Enzymologist Edited by Sidney P. Colowick and Nathan O. Kaplan

Volume V. Preparation and Assay of Enzymes Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VI. Preparation and Assay of Enzymes (Continued)
Preparation and Assay of Substrates
Special Techniques

Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VII. Cumulative Subject Index Edited by Sidney P. Colowick and Nathan O. Kaplan

VOLUME VIII. Complex Carbohydrates

Edited by Elizabeth F. Neufeld and Victor Ginsburg

VOLUME IX. Carbohydrate Metabolism Edited by WILLIS A. WOOD

Volume X. Oxidation and Phosphorylation

Edited by Ronald W. Estabrook and Maynard E. Pullman

VOLUME XI. Enzyme Structure Edited by C. H. W. Hirs

VOLUME XII. Nucleic Acids (Parts A and B)

Edited by LAWRENCE GROSSMAN AND KIVIE MOLDAVE

VOLUME XIII. Citric Acid Cycle Edited by J. M. LOWENSTEIN

VOLUME XIV. Lipids

Edited by J. M. LOWENSTEIN

VOLUME XV. Steroids and Terpenoids Edited by RAYMOND B. CLAYTON

VOLUME XVI. Fast Reactions

Edited by Kenneth Kustin

VOLUME XVII. Metabolism of Amino Acids and Amines (Parts A and B)

Edited by Herbert Tabor and Celia White Tabor

VOLUME XVIII. Vitamins and Coenzymes (Parts A, B, and C)

Edited by Donald B. McCormick and Lemuel D. Wright

VOLUME XIX. Proteolytic Enzymes

Edited by Gertrude E. Perlmann and Laszlo Lorand

VOLUME XX. Nucleic Acids and Protein Synthesis (Part C)

Edited by Kivie Moldave and Lawrence Grossman

VOLUME XXI. Nucleic Acids (Part D)

Edited by Lawrence Grossman and Kivie Moldave

VOLUME XXII. Enzyme Purification and Related Techniques

Edited by WILLIAM B. JAKOBY

VOLUME XXIII. Photosynthesis (Part A)

Edited by Anthony San Pietro

VOLUME XXIV. Photosynthesis and Nitrogen Fixation (Part B)

Edited by Anthony San Pietro

VOLUME XXV. Enzyme Structure (Part B)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVI. Enzyme Structure (Part C)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVII. Enzyme Structure (Part D)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XXVIII. Complex Carbohydrates (Part B)

Edited by VICTOR GINSBURG

VOLUME XXIX. Nucleic Acids and Protein Synthesis (Part E)

Edited by Lawrence Grossman and Kivie Moldave

VOLUME XXX. Nucleic Acids and Protein Synthesis (Part F)

Edited by Kivie Moldave and Lawrence Grossman

VOLUME XXXI. Biomembranes (Part A)

Edited by Sidney Fleischer and Lester Packer

VOLUME XXXII. Biomembranes (Part B)

Edited by Sidney Fleischer and Lester Packer

VOLUME XXXIII. Cumulative Subject Index Volumes I-XXX

Edited by Martha G. Dennis and Edward A. Dennis

VOLUME XXXIV. Affinity Techniques (Enzyme Purification: Part B)

Edited by William B. Jakoby and Meir Wilchek

VOLUME XXXV. Lipids (Part B)

Edited by JOHN M. LOWENSTEIN

VOLUME XXXVI. Hormone Action (Part A: Steroid Hormones)

Edited by Bert W. O'Malley and Joel G. Hardman

VOLUME XXXVII. Hormone Action (Part B: Peptide Hormones)

Edited by BERT W. O'MALLEY AND JOEL G. HARDMAN

VOLUME XXXVIII. Hormone Action (Part C: Cyclic Nucleotides)

Edited by Joel G. Hardman and Bert W. O'Malley

VOLUME XXXIX. Hormone Action (Part D: Isolated Cells, Tissues, and Organ Systems)

Edited by Joel G. Hardman and Bert W. O'Malley

VOLUME XL. Hormone Action (Part E: Nuclear Structure and Function)

Edited by Bert W. O'Malley and Joel G. Hardman

VOLUME XLI. Carbohydrate Metabolism (Part B)

Edited by W. A. WOOD

VOLUME XLII. Carbohydrate Metabolism (Part C)

Edited by W. A. WOOD

VOLUME XLIII. Antibiotics

Edited by JOHN H. HASH

VOLUME XLIV. Immobilized Enzymes

Edited by Klaus Mosbach

VOLUME XLV. Proteolytic Enzymes (Part B)

Edited by Laszlo Lorand

VOLUME XLVI. Affinity Labeling

Edited by William B. Jakoby and Meir Wilchek

VOLUME XLVII. Enzyme Structure (Part E)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XLVIII. Enzyme Structure (Part F)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

VOLUME XLIX. Enzyme Structure (Part G)

Edited by C. H. W. HIRS AND SERGE N. TIMASHEFF

Volume L. Complex Carbohydrates (Part C)

Edited by Victor Ginsburg

VOLUME LI. Purine and Pyrimidine Nucleotide Metabolism

Edited by Patricia A. Hoffee and Mary Ellen Jones

VOLUME LII. Biomembranes (Part C: Biological Oxidations)

Edited by Sidney Fleischer and Lester Packer