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Preface

This book evolved out of lecture notes for a course taught in the Mechanical Engineering
department at Stanford University. The students were at M. S. and Ph. D. level. The course
served as an introduction to turbulence and to turbulence modeling. Its scope was single point
statistical theory, phenomenology, and Reynolds averaged closure. In preparing the present
book the purview was extended to include two-point, homogeneous turbulence theory. This
has been done to provide sufficient breadth for a complete introductory course on turbulence.

Further topics in modeling also have been added to the scope of the original notes; these
include both practical aspects, and more advanced mathematical analyses of models. The
advanced material was placed into a separate chapter so that it can be circumvented if desired.
Similarly, two-point, homogeneous turbulence theory is contained in part III and could be
avoided in an M. S. level engineering course, for instance.

No attempt has been made at an encyclopedic survey of turbulence closure models.
The particular models discussed are those that today seem to have proved effective in
computational fluid dynamics applications. Certainly, there are others that could be cited, and
many more in the making. By reviewing the motives and methods of those selected, we hope
to have laid a groundwork for the reader to understand these others. A number of examples of
Reynolds averaged computation are included.

It is inevitable in a book of the present nature that authors will put their own slant on the
contents. The large number of papers on closure schemes and their applications demands that
we exercise judgement. To boil them down to a text requires that boundaries on the scope be
set and adhered to. Our ambition has been to expound the subject, not to survey the literature.
Many researchers will be disappointed that their work has not been included. We hope they
will understand our desire to make the subject accessible to students, and to make it attractive
to new researchers.

An attempt has been made to allow a lecturer to use this book as a guideline, while putting
his or her personal slant on the material. While single point modeling is decidedly the main
theme, it occupies less than half of the pages. Considerable scope exists to choose where
emphasis is placed.

Motivation

It is unquestionably the case that closure models for turbulence transport are finding
an increasing number of applications, in increasingly complex flows. Computerised fluid
dynamical analysis is becoming an integral part of the design process in a growing number
of industries: increasing computer speeds are fueling that growth. For instance, computer
analysis has reduced the development costs in the aerospace industry by decreasing the
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number of wind tunnel tests needed in the conceptual and design phases.

As the utility of turbulence models for computational fluid dynamics (CFD) has increased,
more sophisticated models have been needed to simulate the range of phenomena that arise.
Increasingly complex closure schemes raise a need for computationalists to understand the
origins of the models. Their mathematical properties and predictive accuracy must be assessed
to determine whether a particular model is suited to computing given flow phenomena.
Experimenters are being called on increasingly to provide data for testing turbulence models
and CFD codes. A text that provides a solid background for those working in the field seems
timely.

The problems that arise in turbulence closure modeling are as fundamental as those in
any area of fluid dynamics. A grounding is needed in physical concepts and mathematical
techniques. A student, first confronted with the literature on turbulence modeling, is bound
to be baffled by equations seemingly pulled from thin air; to wonder whether constants are
derived from principles, or obtained from data; to question what is fundamental and what is
peculiar to a given model. We learned this subject by ferreting around the literature, pondering
just such questions. Some of that experience motivated this book.

Epitome

The prerequisite for this text is a basic knowledge of fluid mechanics, including viscous flow.
The book is divided into three major parts.

Part I provides background on turbulence phenomenology, Reynolds averaged equations
and mathematical methods. The focus is on material pertinent to single point, statistical
analysis, but a chapter on eddy structures is also included.

Part Il is on turbulence modeling. It starts with the basics of engineering closure modeling,
then proceeds to increasingly advanced topics. The scope ranges from integrated equations
to second moment transport. The nature of this subject is such that even the most advanced
topics are not rarefied; they should pique the interest of the applied mathematician, but should
also make the R & D engineer ponder the potential impact of this material on her or his work.

Part III introduces Fourier spectral representations for homogeneous turbulence theory. It
covers energy transfer in spectral space and the formalities of the energy cascade. Finally
rapid distortion theory is described in the last section. Part III is intended to round out the
scope of a basic turbulence course. It does not address the intricacies of two-point closure, or
include advanced topics.

A first course on turbulence for engineering students might cover part I, excluding the
section on tensor representations, most of part II, excluding chapter 8, and a brief mention
of selected material from part II1. A first course for more mathematical students might place
greater emphasis on the latter part of chapter 2 in part I, cover a limited portion of part II
— emphasizing chapter 7 and some of chapter 8 — and include most of part ITI. Advanced
material is intended for prospective researchers.
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Where under this beautiful chaos can there lie a simple numerical structure?
— Jacob Bronowski

1
Introduction

Turbulence is an ubiquitous phenomenon in the dynamics of fluid flow. For decades,
comprehending and modeling turbulent fluid motion has stimulated the creativity of scientists,
engineers and applied mathematicians. Often the aim is to develop methods to predict the flow
fields of practical devices. To that end, analytical models are devised that can be solved in
computational fluid dynamics codes. At the heart of this endeavor is a broad body of research,
spanning a range from experimental measurement to mathematical analysis. The intent of this
text is to introduce some of the basic concepts and theories that have proved productive in
research on turbulent flow.

Advances in computer speed are leading to an increase in the number of applications of
turbulent flow prediction. Computerised fluid flow analysis is becoming an integral part of
the design process in many industries. As the use of turbulence models in computational
fluid dynamics increases, more sophisticated models will be needed to simulate the range
of phenomena that arise. The increasing complexity of the applications will require creative
research in engineering turbulence modeling. We have endeavored in writing this book both
to provide an introduction to the subject of turbulence closure modeling, and to bring the
reader up to the state of the art in this field. The scope of this book is certainly not restricted
to closure modeling, but the bias is decidedly in that direction. To flesh out the subject a
broader presentation of statistical turbulence theory is provided in the chapters that are not
explicitly on modeling. In this way an endeavor has been made to provide a complete course
on turbulent flow. We start with a perspective on the problem of turbulence that is pertinent
to this text. Readers not very familiar with the subject might find some of the terminology
unfamiliar; it will be explicated in due course.

1.1 The Turbulence Problem

The turbulence problem is an age-old topic of discussion among fluid dynamicists. It is not a
problem of physical law; it is a problem of description. Turbulence is a state of fluid motion,
governed by known dynamical laws — the Navier-Stokes equations in cases of interest here.
In principle turbulence is simply a solution to those equations. The turbulent state of motion is
defined by the complexity of such hypothetical solutions. The challenge of description lies in
the complexity: how can this intriguing behavior of fluid motion be represented in a manner
suited to the needs of science and engineering?

Turbulent motion is fascinating to watch: it is made visible by smoke billows in the



2 INTRODUCTION

atmosphere, by surface deformations in the wakes of boats, and by many laboratory techniques
involving smoke, bubbles, dyes, etc. Computer simulation and digital image processing show
intricate details of the flow. But engineers need numbers as well as pictures, and scientists
need equations as well as impressions. How can the complexity be fathomed? That is the
turbulence problem.

Two characteristic features of turbulent motion are its ability to stir a fluid and its ability
to dissipate kinetic energy. The former mixes heat or material introduced into the flow.
Without turbulence these substances would be carried along streamlines of the flow and slowly
diffuse by molecular transport; with turbulence they rapidly disperse across the flow. Energy
dissipation by turbulent eddies increases resistance to flow through pipes and it increases
the drag on objects in the flow. Turbulent motion is highly dissipative because it contains
small eddies that have large velocity gradients, upon which viscosity acts. In fact, another
characteristic of turbulence is its continuous range of scales. The largest size eddies carry
the greatest kinetic energy. They spawn smaller eddies via non-linear processes. The smaller
eddies spawn smaller eddies, and so on in a cascade of energy to smaller and smaller scales.
The smallest eddies are dissipated by viscosity. The grinding down to smaller and smaller
scales is referred to as the energy cascade. 1t is a central concept in our understanding of
stirring and dissipation in turbulent flow.

The energy that cascades is first produced from orderly, mean motion. Small perturbations
extract energy from the mean flow and produce irregular, turbulent fluctuations. These are
able to maintain themselves, and to propagate by further extraction of energy. This is referred
to as production, and transport of turbulence. A detailed understanding of such phenomena
does not exist. Certainly these phenomena are highly complex and serve to emphasize that the
true problem of turbulence is one of analyzing an intricate phenomenon.

The term ‘eddy’, used above, may have invoked an image of swirling motion round a vortex.
In some cases that may be a suitable mental picture. However, the term is usually meant to be
more ambiguous. Velocity contours in a plane mixing layer display both large and small scale
irregularities. Figure 1.1 illustrates an organization into large scale features with smaller scale
random motion superimposed. The picture consists of contours of a passive scalar introduced
into a mixing layer. Very often the image behind the term ‘eddy’ is this sort of perspective
on scales of motion. Instead of vortical whorls, eddies are an impression of features seen in a
contour plot. Large eddies are the large lumps seen in the figure, small eddies are the grainy
background. Further examples of large eddies are discussed in the chapter of this book on
coherent and vortical structures.

A simple method to produce turbulence is by placing a grid normal to the flow in a wind
tunnel. Figure 1.2 contains a smoke visualization of the turbulence downstream of the bars of
a grid. The upper portion of the figure contains velocity contours from a numerical simulation
of grid turbulence. In both cases the impression is made that, on average, the scale of the
irregular velocity fluctuations increases with distance downstream. In this sense the average
size of eddies grows larger with distance from the grid.

Analyses of turbulent flow inevitably invoke a statistical description. Individual eddies
occur randomly in space and time and consist of irregular regions of velocity or vorticity.
At the statistical level, turbulent phenomena become reproducible and subject to systematic
study. Statistics, like the averaged velocity, or its variance, are orderly and develop regularly
in space and time. They provide a basis for theoretical descriptions and for a diversity of
prediction methods. However, exact equations for the statistics do not exist. The objective
of research in this field has been to develop mathematical models and physical concepts to
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Figure 1.1 Turbulent eddies in a plane mixing layer subjected to periodic forcing.
From Rogers & Moser (1994), reproduced with permission.

stand in place of exact laws of motion. Statistical theory is a way to fathom the complexity.
Mathematical modeling is a way to predict flows. Hence the title of this book: statistical theory
and modeling for turbulent flows.

The alternative to modeling would be to solve the three-dimensional, time-dependent
Navier-Stokes equations to obtain the chaotic flow field, and then to average the solutions in
order to obtain statistics Such an approach is referred to as direct numerical simulation (DNS).
Direct numerical simulation is not practical in most flows of engineering interest. Engineering
models are meant to bypass the chaotic details and to predict statistics of turbulent flows
directly. A great demand is placed on these engineering closure models: they must predict
the averaged properties of the flow without requiring access to the random field; they must
do so in complex geometries for which detailed experimental data do not exist; they must
be tractable numerically and not require excessive computing time. These challenges make
statistical turbulence modeling an exciting field.

The goal of turbulence theories and models is to describe turbulent motion by analytical
methods. The particular methods that have been adopted depend on the objectives: whether
it is to understand how chaotic motion follows from the governing equations, to construct
phenomenological analogues of turbulent motion, to deduce statistical properties of the
random motion, or to develop semi-empirical calculational tools. The latter two are the subject
of this book.

The first step in statistical theory is to greatly compress the information content from that
of a random field of eddies to that of a field of statistics. In particular, the turbulent velocity
consists of a three component field (1, u2, ug) as a function of four independent variables
(x1, 22, x3,t). This is a rapidly varying, irregular flow field, such as might be seen embedded
in the billows of a smoke stack, the eddying motion of the jet in figure 1.3, or the more
explosive example of figure 1.4. In virtually all cases of engineering interest, this is more
information than could be used, even if complete data were available. It must be reduced to
a few useful numbers, or functions, by averaging. The picture to the right of figure 1.4 has
been blurred to suggest the reduced information in an averaged representation. The small-
scale structure in smoothed by averaging. A true average in this case would require repeating
the explosion many times and summing the images; even the largest eddies would be lost
to smoothing. A stationary flow can be averaged in time, as illustrated by the time-lapse
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(b)

Figure 1.2 a) Grid turbulence schematic, showing contours of streamwise velocity
from a numerical simulation. b) Turbulence produced by flow through a grid. The
bars of the grid would be to the left of the picture, and flow is from left to right.
Visualization by smoke wire of laboratory flow, courtesy of T. Corke & H. Nagib.

photograph at the right of figure 1.3. Again, all semblance of eddying motion is lost in the
averaged view.

An example of the greatly simplified representation invoked by statistical theory is provided
by grid turbulence. When air flows through a grid of bars the fluid velocity produced is a
complex, essentially random, three-component, three-dimensional, time-dependent field, that
defies analytical description (figure 1.2). This velocity field might be described statistically
by its variance, ¢* as a function of distance downwind of the grid. ¢2 is the average value of
ui + u3 + u3 over planes perpendicular to the flow. This statistic provides a smooth function
that characterizes the complex field. In fact, the dependence of ¢2 on distance downstream of
the grid is usually represented to good approximation by a power-law: ¢® o x~" where n
is about 1. The average length scale of the eddies grows like L oc #!~"/2. This provides a
simple formula that agrees with the impression created by figure 1.2 of eddy size increasing
with x.

The catch to the simplification which a statistical description seems to offer is that it is only
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Figure 1.3 Instantaneous and time averaged views of a jet in cross flow. The jet
exits from the wall at left into a stream flowing from bottom to top (Su & Mungal,
1999).

a simplification if the statistics somehow can be obtained without having first to solve for the
whole, complex velocity field and then compute averages. The task is to predict the smooth jet
at the right of figure 1.3 without access to the eddying motion at the left. Unfortunately there
are no exact governing equations for the averaged flow, and empirical modeling becomes
necessary. One might imagine that an equation for the average velocity could be obtained
by averaging the equation for the instantaneous velocity. That would only be the case if the
equations were linear, which the Navier-Stokes equations are not.

The role of non-linearity can be explained quite simply. Consider a random process
generated by flipping a coin, assigning the value 1 to heads and O to tails. Denote this value
by £. The average value of £ is 1/2. Let a velocity, u, be related to ¢ by the linear equation

w=¢— 1. (1.1.1)

The average of u is the average of ¢ — 1. Since £ — 1 has probability 1/2 of being 0 and
probability 1/2 of being — 1, the average of u is —1/2. Denote this average by u. The equation
for W can be obtained by averaging the exact equation: 7 = ¢ — 1 = 1/2 — 1 = —1/2. But if
u satisfies a non-linear equation

wW4+u=£6—-1 (1.1.2)

then the averaged equation is
wW4+2Uu=£€—-1=-1/2. (1.1.3)

This is not a closed™ equation for % because it contains u?: squaring, then averaging, is

* The terms ‘closure problem’ and ‘closure model’ are ubiquitous in the literature. Mathematically this
means that there are more unknowns than equations. A closure model simply provides extra equations to
complete the unclosed set.
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Figure 1.4  Large and small scale structure in a plume. The picture at the right is
blurred to suggest the effect of ensemble averaging.

not equal to averaging, then squaring, u? # @°. In 1 this example averaging produces a
single equation with two dependent variables, @ and u2. The example is contrived so that
it first can be solved, then averaged: its solution is u = V& — 1; the average is then
= (1/2)(V1-1)+ (1/2)(V0 — 1) = —1/2. Similarly «Z = 1/2, but this could not
be known without first solving the random equation, then computing the average. In the case
of the Navier-Stokes equations, one cannot resort to solving, then averaging. As in this simple
illustration, the average of the Navier-Stokes equations are equations for 7 that contain u?.
Unclosed equations are inescapable.

1.2 Closure Modeling

Statistical theories of turbulence attempt to obtain statistical information either by systematic
approximations to the averaged, unclosed governing equations, or by intuition and analogy.
Usually, the latter has been the more successful: the Kolmogorov theory of the inertial
subrange and the log-law for boundary layers are famous examples of intuition.

Engineering closure models are in this same vein of invoking systematic analysis in
combination with intuition and analogy to close the equations. For example, Prandt] drew
an analogy between turbulent transport of averaged momentum by turbulent eddies and the
kinetic theory of gasses when he proposed his ‘mixing length’ model. Thereby he obtained a
useful model for predicting turbulent boundary layers.

The allusion to ‘engineering flows’ implies that the flow arises in a configuration that has
technological application. Interest might be in the pressure drop in flow through a bundle of
heat-exchanger tubes or across a channel lined with ribs. The turbulence dissipates energy
and increases the pressure drop. Or the concern might be with heat transfer to a cooling



