INTERNATIONAL ENCYCLOPEDIA OF ROBOTICS

Applications and Automation

Volume 1

RICHARD C. DORF

INTERNATIONAL ENCYCLOPEDIA OF ROBOTICS: APPLICATIONS AND AUTOMATION

VOLUME 1

Richard C. Dorf, Editor-in-Chief

Shimon Y. Nof, Consulting Editor

A Wiley-Interscience Publication

John Wiley & Sons

New York

Chichester

Brisbane

Toronto

Singapore

Copyright © 1988 by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data:

International encyclopedia of robotics. "A Wiley-Interscience publication."

1. Robotics—Dictionaries. I. Dorf, Richard C.

II. Nof, Shimon Y., 1946-

TJ210.4.I57 1988 629.8'92'0321

87-37264

ISBN 0-471-87868-5 (set)

ISBN 0-471-63512-4 (Vol. 1)

Printed in the United States of America

1098765432

INTERNATIONAL ENCYCLOPEDIA OF ROBOTICS: APPLICATIONS AND AUTOMATION

VOLUME 1

EDITORIAL BOARD

John J. DiPonio Ford Motor Company Dearborn, Michigan

Yukio HasegawaSystems Science Institute
Waseda University
Tokyo, Japan

Ulrich RemboldKarlsruhe University
FRG

Daniel E. WhitneyC.S. Draper Laboratories
Cambridge, Massachusetts

EDITORIAL STAFF

Editor-in-Chief: Richard C. Dorf Consulting Editor: Shimon Y. Nof Managing Editor: Frank Cerra

Editorial Manager: Michalina Bickford

Production Manager: Jenet McIver Production Supervisor: Phyllis Brooks Production Assistant: Jean Spranger

CONTRIBUTORS

James Acton, Chula Vista, California, Shipbuilding, robots in

Philip Adsit, University of Florida, Gainesville, Florida, Robots in agriculture
 I. Ahmad, Eastern Michigan University, Ypsilanti, Michigan, Programming, task and motion planning

Shuhei Aida, University of Electro-communications, Tokyo, Japan, Robots in Japan

Mary K. Allen, U.S.A.F., A.F.L.C., Wright Patterson AFB, Dayton, Ohio, Machine loading/unloading

Joseph Alvite, Mecanotron Corp., Roseville, Minnesota, Interfacing, robots and sensors

Fred Aminzadeh, Unocal Corporation, Brea, California, Petroleum industry, robots in

Fred M. Amram, University of Minnesota, Minneapolis, Minnesota, Automation, human aspects

Joseph Anderson, Tennessee Technological University, Cookeville, Tennessee, Specifications

Roger Anderson, Bryant College, Smithfied, Rhode Island, Workers unions, and robots

Phillip Andrews, Deloitte Haskins & Sells, Detroit, Michigan, Integration, robots and CIM

James M. Apffel, University of California, Davis, California, Vision systems, industrial application

James M. Apple, Systecon, Inc., Duluth, Georgia, Material handling Robert Ayres, Carnegie-Mellon University, Pittsburgh, Pennsylvania, Employment, impact

Alfred J. Baker, New York City Police Department, New York, New York, Police robots

Roman Baldur, Ecole Polytechnic, Montréal, Québec, Canada, Sensors, for safety

Bruce Ballard, AT&T Bell Laboratories, Murray Hill, New Jersey, Computational linguistics

Luc Baron, Ecole Polytechnic, Montréal, Québec, Canada, Sensors, for safety

Antal K. Bejczy, Jet Propulsion Laboratory, Pasadena, California, Software elements

Joseph Bellino, General Electric, Plainville, Connecticut, Safety, of operators

H. Bera, South Bank Polytechnic, London, United Kingdom, Sensors, special purpose

Philip L. Bereano, University of Washington, Seattle, Washington, Government policies

Edward Bernardon, The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts, Apparel industry, robots in

John E. Biegel, University of Central Florida, Orlando, Florida, Learning and adaption

J. Browne, University College, Galway, Galway City, Republic of Ireland, Kitting

Timothy J. Bublick, DeVilbiss Co., Toledo, Ohio, Painting

William Burns, Greenville Technical College, Greenville, South Carolina, Maintenance and repair, robotic

Frank Busby, Arlington, Virginia, Underwater exploration, robots in

Perry Carter, Brigham Young University, Provo, Utah, Assembly, robotic, design for

John Cesarone, Northwestern University, Evanston, Illinois, Trajectories
Paul Chapman, Micro Switch, Honeywell Corporation, Freeport, Illinois,
Sensors, evolution

J. Y. Chen, Memorial Medical Center, Long Beach, California, Surgery, robots in

- Philip R. Chimes, Pittsburgh, Pennsylvania, Multiple robots systems, contol of
- Tom Clareson, College of Wooster, Wooster, Ohio, Sci-Fi robot
- John J. Craig, Silma Inc., Los Altos, California, Multicoordinated robotic devices
- **R. M. Crowder,** University of Southampton, Southampton, United Kingdom, Sensors, touch, force, and torque measurement
- Robert Crowder, Ship Star Associates, Newark, Delaware, Manufacturing automation protocol
- John Cuadrado, Octy, Inc., Fairfax Station, Virginia, Vision systems, programming
- Nicholas Dagalakis, National Bureau of Standards, Gaithersburg, Maryland, Testing
- **A. Davies,** University of Wales, Institute of Science and Technology, Cardiff, Wales, United Kingdom, Market forecasts
- Ray Davis, Cheseborough Ponds, Inc., Clinton, Connecticut, Packaging with robots
- Rui J. P. Defigueiredo, Rice University, Houston, Texas, Space robots
- Alan A. Desrochers, Rensselaer Polytechnic Institute, Troy, New York, Motion control
- George Devol, Devol Research Association, Wilton, Connecticut, Robot systems, evolution
- Robert Doornick, International Robotics, New York, New York, Show, home, and communication robots
- Morris Driels, Texas A&M University, College Station, Texas, Research programs
- John Dudley, Seiko Instruments, U.S.A., Inc., Torrance, California, Electronics industry, robots in
- Marilyn Dulitzky, Thomas J. Lipton, Inc., Englewood Cliffs, New Jersey, Precision instruments industry, robots in
- James Dunseth, Vision Systems International, Yardley, Pennsylvania, Vision systems, theory
- Kornel F. Eman, Northwestern University, Evanston, Illinois, Trajectories John Ettlie, Industrial Technology Institute, Ann Arbor Michigan, Management and robotics
- H. R. Everett, Naval Ocean Systems Center, San Diego, California, Security and sentry robots
- Daniele Fabrizi, University of Pavia and the Italian Association of Robotics, International Federation of Robotics, Bergamo, Italy, Appliance industry robots in
- Charles H. Falkner, University of Wisconsin-Madison, Madison, Wisconsin, Leasing of robots
- Francis Farrell, Thomas J. Lipton, Inc., Engelwood Cliffs, New Jersey, Precision instruments industry, robots in
- Edward Fisher, North Carolina State University, Raleigh, North Carolina, Woodworking industry, robots in
- Carl R. Flatau, Telerobotics, Inc., Bohemia, New York, Teleoperators, design of
- James Fleck, Edinburgh University, Edinburgh, Scotland, United Kingdom, Organization and management
- R. E. Floyd, IBM, Boca Raton, Florida, Technological forecasts
- **Philip Francis**, Motorola Inc., Shaumburg, Illinois, Transportation industry, robots in
- Andrew Frank, University of California, Davis, California, Walkers
- Ernest Franke, Southwest Research Institute, San Antonio, Texas, Deriveters of aircraft wings, robotic
- Hiroyasu Funakubo, Shibaura Institute of Technology, Tokyo, Japan, and Ecole Polytechnique Fédérale de Lausanne, Switzerland, Hospitals and nursing homes, robots in
- Louis Galbiati, State University of New York, Utica, New York, Robot, revolution the
- Scott Garlid, University of Wisconsin-Madison, Madison, Wisconsin, Leasing of robots
- R. R. Gawronski, University of West Florida, Pensacola, Florida, Heuristics
- **Ludo F. Gelders,** Katholieke Universiteit Leuven, Heverlee, Belgium, Reliability and maintenance

- L. J. George, University of Cincinnati, Cincinnati, Ohio, Factory of the future—a case study
- William Gevarter, NASA, Mountain View, California, Expert systems; Machine intelligence, its nature and evolution
- Hassan Gomaa, Wang Institute of Graduate Studies, Tyngsboro, Massachusetts. Programming of multiple robot systems
- James H. Graham, University of Louisville, Louisville, Kentucky, Controller architecture
- Mikell Groover, Lehigh University, Bethlehem, Pennsylvania, Automation William Gruver, University of Kentucky, Lexington, Kentucky, Programming Richard Gustavson, The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts, Economic justification, high level language
- Daniel Hall, Center for Occupational Research and Development, Waco, Texas, Training of robotic personnel
- P. A. Hancock, University of Southern California, Los Angeles, California, Sensors, integration
- Dennis Harms, Intelledex, Corvallis, Oregon, Clean room applications
- Roy Harrel, University of Florida, Gainesville, Florida, Robots in agriculture Kevin Hartwig, Holland, Michigan, Sensors, new principles
- Mitsuhiko Hasegawa, Technological University of Nagaoka, Nagaoka, Japan, Robots in Japan
- Samad A. Hayati, California Institute of Technology, Pasadena, California, Calibration
- Martin G. Helander, State University of New York at Buffalo, Buffalo, New York, Ergonomics, workplace design
- David Hoska, D&D Engineering, Inc., Shoreview, Minnesota, Assembly robots
- Vincent Howell, Computer Consoles, Rochester, New York, Integration of systems
- T. C. Hsia, University of California, Davis, California, Servosystems, design of
- Atlas J. Hsie, SUNY College of Technology, Utica, New York, Finishing Kenichi Isoda, Hitachi, Tokyo, Japan, Inspection robot, advanced robotic inspection applications
- A. Jain, University of California, Davis, California, Vision systems, industrial inspection
- Anil K. Jain, Michigan State University, East Lansing, Michigan, Pattern recognition
- **Raymond A. Jarvis,** *Monash University, Victoria, Australia,* Sensors, distance measurement
- Mariann Jelinek, Case Western Reserve University, Cleveland, Ohio, Flexible manufacturing cells and systems
- Lyle M. Jenkins, NASA, Johnson Space Center, Houston, Texas, Space robots Jack Jeswiet, Queens University, Kingston, Ontario, Canada, Materials of robots
- Wesley Johnston, University of Southern California, Los Angeles, California, Machine loading/unloading
- E. Jonckheere, Memorial Medical Center, Long Beach, California, Surgery, robots in
- M. Jones, AT&T Bell Laboratories, Murray Hill, New Jersey, Computational linguistics
- Michael Kassler, Michael Kassler and Associates, McMahons Point, Australia, Mining, robots in
- Stewart J. Key, University of Western Australia, Nedlands, Western Australia, Food processing, robots in
- **Steven H. Kim,** Massachusetts Institute of Technology, Cambridge, Massachusetts, Information framework for robot design
- Francis King, Ford Motor Company, Dearborn, Michigan, Vision systems for robotic guidance
- **Kerry E. Kirsch**, Kirsch Technologies, St. Clair, Michigan, Inspection robot, applications in industry
- Jerry Kirsch, Kirsch Technologies, St. Clair, Michigan, Inspection robot, applications in industry
- Richard D. Klafter, Temple University, Philadelphia, Pennsylvania, Mobile robots, research and development
- Charles Klein, The Ohio State University, Columbus, Ohio, Simulators, graphic

- D. E. Koditschek, Yale University, New Haven, Connecticut, Robot control systems
- Y. Koren, University of Michigan, Ann' Arbor, Michigan, Numerical control John G. Kreifeldt, Tufts University, Medford, Massachussetts, Ergonomics, human-robot interface
- **Andrew Kusiak,** University of Manitoba, Winnepeg, Canada, Programming, off-line languages
- Y. S. Kwoh, Memorial Medical Center, Long Beach, California, Surgery, robots in
- Jack Lane, Robotic Integrated Systems Engineering, Inc., Flint, Michigan, Education, robotics
- John Lamancusa, Pennsylvania State University, University Park, Pennsylvania, Sensors, ultrasonic
- Stan Larsson, ASEA AB, Vasteras, Sweden, Foundry applications
- J. F. Laszcz, IBM, Atlanta, Georgia, Product design
- Kim Lau, National Bureau of Standards, Gaithersburg, Maryland, Testing Jay Lee, Robotics Vision Systems, Hauppauge, New York, Tool changing Kunwoo Lee, Seoul National University, Seoul, Korea, Terminology
- S. H. Lee, Northwestern University, Evanston, Illinois, Trajectories
- Jadran Lenarčič, Institute Jožef Stefan, University of Edvard Kardelj, Ljublijana, Yugoslavia, Kinematics
- Martin D. Levine, McGill University, Montréal, Québec, Canada, Issues in robotics
- H. Lewis, University of Wales, Institute of Science and Technology, Cardiff, Wales, United Kingdom, Market forecasts
- Wen Lin, University of California, Davis, California, Speech systems
- Z. Lin, Concordia University, Montréal, Québec, Canada, Trajectory planning
- Elan Long, CIMCORP, Aurora, Illinois, Gantry robots
- Pierre Lopez, GARI/DGE/INSAT, Toulouse, France, Control values from geometric model
- James Lovett, Center for Occupational Research and Development, Waco, Texas, Training of robotics personnel
- James Luckmeyer, Southwest Research Institute, San Antonio, Texas, Deriveters of aircraft wings, robotic
- James T. Luxon, GMI Engineering and Management Institute, Flint, Michigan, Laser applications with robots
- Anthony A. Maciejewski, The Ohio State University, Columbus, Ohio, Simulators, graphic
- Oded Maimon, Tel Aviv University, Tel Aviv, Israel, Woodworking industry, robots in
- Robert Malone, Robert Malone and Associates, New York, New York, Art, robots in; Literature, robots in; Movies, robots in
- **Alfred S. Malowany**, McGill University, Montréal, Québec, Canada, Issues in robotics
- E. H. Mamdani, Queen Mary College, University of London, London, United Kingdom, Control of robots using fuzzy reasoning
- **Abdol-Reza Mansouri,** McGill University, Montréal, Québec, Canada, Issues in robotics
- Danny McCoy, B&D Sencorp Inc., Utica, New York, Finishing
- **Kevin McDermott,** New Jersey Institute of Technology, Newark, New Jersey, Original equipment manufacturers
- B. C. McInnis, University of Houston, Houston, Texas, Control strategies
- R. Meemarshi, Tennessee Technological University, Cookeville, Tennessee, Process planning
- G. Menga, Politecnici de Torino, Turin, Italy, Quality control
- John D. Meyer, Tech Tran Consultants, Lake Geneva, Wisconsin, Applications of robots
- Alex Meystel, Drexel University, Philadelphia, Pennsylvania, Mobile robots Lawrence T. Michaels, Ernst & Whinney, Cleveland, Ohio, Cost/benefit
- Christian Michaud, McGill University, Montréal, Québec, Canada, Issues
- **David P. Miller,** Virginia Polytechnic Institute and State University, Blacksburg, Virginia, Planning and problem solving
- **Anil Mital,** University of Cincinnati, Cincinnati, Ohio, Desirability of robots; Factory of the future—a case study

- Hiroyuki Miyamoto, Tokyo Women's Medical College, Tokyo, Japan, Prosthetics
- Tom Moore, Queens University, Kingston, Ontario, Canada, Materials of robots
- Philip Muilenberg, La Jolla, California, Undersea robots
- **Donald Myers,** National Bureau of Standards, Gaithersburg, Maryland, Testing
- Yasuo Nakagawa, Hitachi, Tokyo, Japan, Inspection robot, advanced robotic inspection applications
- **E. Thomas Napp,** Baxter Travenol, Round Lake, Illinois, Medical equipment production, robots in
- M. Narayanan, Miami University, Oxford, Ohio, Manufacturers of robots Shimon Y. Nof, Purdue University, West Lafayette, Indiana, Ergonomics John Nostrand, New Canaan, Connecticut, Service industry, robots in
- P. O'Gorman, University of Ulster at Jordanstown, Co. Anterim, Northern Ireland, Kitting
- Irv Oppenheim, Carnegie-Mellon University, Pittsburgh, Pennsylvania, Construction, robots in
- Philip Ostwald, Boulder, Colorado, Economics, robotic manufacturing and products
- William Palm, University of Rhode Island, Kingston, Rhode Island, Hands Louis Panicali, Tennessee Technical University, Cookeville, Tennessee, Specifications
- Yoh-Han Pao, Case Western Reserve University, Cleveland, Ohio, Flexible manufacturing cells and systems
- H. M. Parsons, Essex Corporation, Alexandria, Virginia, Human factors
- P. V. Patel, Concordia University, Montréal, Québec, Canada, Trajectory planning
- David C. Penning, DCP Associates, Palo Alto, California, Unmanned factories
- Noel Perrin, Dartmouth College, Hanover, New Hampshire, Human impacts
- James Peyton, Robotic Industries Association, Ann Arbor, Michigan, Standards
- Sandra Pfister, Cincinnati, Ohio, Personnel, robotics
- David Pherson, Battelle, Geneva, Switzerland, Transducers
- Lewis Pinson, University of Colorado, Colorado Springs, Colorado, Future applications
- L. Pintelon, Katholieke Universiteit, Leuven, Heverlee, Belgium, Reliability and maintenance
- Wallace Plumley, Acworth, Georgia, Aerospace industry, robots in
- Gary Poock, Monterey, California, Programming by voice
- **Dejan Popovic,** Faculty of Electrical Engineering, Belgrade, Yugoslavia, Handicapped, robots for
- Alan Porter, Georgia Institute of Technology, Atlanta, Georgia, Futurism and robotics
- Ronald D. Potter, AMS Engineering Group, Norcross, Georgia, End-of-arm tooling
- James Pranger, Robotic Industries Association, Ann Arbor, Michigan, Standards
- Hriday Prasad, Ford Motor Co., Dearborn, Michigan, Safety standards
- Lute A. Quintrell, Price Waterhouse, Cleveland, Ohio, Cost/benefit
- Mansouri Rahimi, University of Southern California, Los Angeles, California, Sensors, integration
- H. Rahnejat, Kingston Polytechnic, Kingston-upon-Thames, United Kingdom, Sensors, special purpose
- N. S. Rajaram, University of Houston, Houston, Texas, Automated guided vehicle systems
- Carlos Ramirez, Martin Marietta, New Orleans, Louisiana, Safety of robot
- Kenneth Ramsing, University of Oregon, Eugene, Oregon, Workers, unions, and robots
- Paul G. Ranky, The University of Michigan, Ann Arbor, Michigan, Accuracy
 Bahram Ravani, University of California, Davis, California, Teleoperator
 control using telepresence
- **Alan H. Redford,** University of Salford, Salford, United Kingdom, Programmable assembly

I. S. Reed, Memorial Medical Center, Long Beach, California, Surgery, robots in

Peter A. Regla, Elicon, La Habra, California, Motion picture industry, robots in

P. P. L. Regtien, Technicshe Hogeschool, Delft, The Netherlands, Sensors, color sensing

Harry T. Roman, Public Service Electric and Gas Company, Newark, New Jersey, Electric power industry, robots in

Azriel Rosenfeld, University of Maryland, College Park, Maryland, Vision systems, history

Mark Rosheim, Ross-Hime Designs, St. Paul, Minnesota, Wrists

Fred Rossini, Georgia Institute of Technology, Atlanta, Georgia, Futurism and robotics

Zvi R. Roth, Florida Atlantic University, Boca Raton, Florida, Self-organizing and self-repair; Teaching a robot

A. Rovetta, Politecnico de Milano, Milan, Italy, Voice control of robots Jerzy W. Rozenblit, The University of Arizona, Tucson, Arizona, Design and modeling concepts

Andrew P. Sage, George Mason University, Fairfax, Virginia, Cybernetics Edward Sampson, Cooper & Lybrand, Newport Beach, California, Service industry, robots in

William A. Sanders, III, U.S. Army Research Office, Research Triangle Park, North Carolina, Vision systems, industrial application

Jorge Sanz, IBM Research Laboratory, San Jose, California, Vision systems, industrial inspection

George Saridis, Rensselaer Polytechnic Institute, Troy, New York, Adaptive control

F. Sassani, University of British Columbia, Vancouver, British Columbia, Canada, Research robots

Jerry W. Saveriano, Saveriano & Associates, Carlsbad, California, Pioneers in robotics

Susumu Sawano, Tokico, Kawasaki-shi, Japan, Sealing

E. M. Scharf, Queen Mary College, University of London, London, United Kingdom, Control of robots using fuzzy reasoning

Victor Scheinman, Automatix, Inc., Billerica, Massachusetts, Mechanical design of components; Transmission

George Schneider, Jr., Lawrence Institute of Technology, Southfield, Michigan, Interfacing robots with auxiliary equipment for education and training

Rolf Schraft, Fraunhofer Institut fur Producktimstecnik und Automatsierung, Stuttgart, Federal Republic of Germany, Robots in Western Europe

Mario Sciaky, Sciaky S. A., Vitry-sur-Seine, France, Welding robots

Warren P. Seering, Cal Tech, Pasadena, California, Mechanical design of components; Transmission

Mo Shahinpoor, University of New Mexico, Albuquerque, New Mexico, Dynamics

Yacov Shamash, Washington State University, Pullman, Washington, Teaching a robot

Loren Shaum, SMI, Elkhart, Indiana, Actuators

L. S. Shieh, University of Houston, Houston, Texas, Control strategies

Miroslaw J. Skbniewski, Purdue University, West Lafayette, Indiana, Construction, robots in

David G. Slaughter, University of Florida, Gainesville, Florida, Robots in agriculture

Bruce Smith, ASEA, Troy, Michigan, Welding robots

Sharon Smith, formerly, International Personal Robot Congress, Conifer, Colorado, Art, robotic

Steven E. Smith, Triplex, Torrance, California, Programmable controllers Barry Soroka, California State Polytechnic University, Pomona, California, Programming, high level language

William Stallings, Comp-Comm Consulting, London, United Kingdom, Communications; Local area networks

Y. Stepanenko, University of Waterloo, Waterloo, Ontario, Canada, State-feedback robot control

Janet Strimaitis, Zymark Corporation, Hopkington, Massachusetts, Scientific laboratories, robots in

M. Sundaram, Tennessee Technological University, Cookeville, Tennessee, Process planning

Kazuo Tanie, Mechanical Engineering Laboratory MITI, Tokyo, Japan, Grippers

william R. Tanner, Tanner Associates, Farmington Hills, Michigan, Classification

T. J. Tarn, Washington University, St. Louis, Missouri, Software elements G. E. Taylor, University of Hull, Hull, United Kingdom, Garment and shoe industry, robots in

P. M. Taylor, University of Hull, Hull, United Kingdom, Garment and shoe industry, robots in

William Teoh, SPARTA, Huntsville, Alabama, Teleoperators, research

Rajko Tomovic, Faculty of Electrical Engineering, Belgrade, Yugoslavia, Handicapped, robots for

James P. Trevelyan, University of Western Australia, Nedlands, Western Australia, Food processing, robots in

Robin Truman, Plessey Network and Office Systems, Ltd., Beeston, Nottingham, United Kingdom, Component assembly onto printed circuit boards

T. K. Truong, Memorial Medical Center, Long Beach, California, Surgery, robots in

Taizo Ueda, Honda Foundation, Tokyo, Japan, Robots in Japan

William Uhde, UAS Automation Systems, Bristol, Connecticut, Fabrication and machining applications

Noriyuki Utsemi, Tokico, Kawasaki, Japan, Sealing

A. Villa, Politecnico de Torino, Turin, Italy, Quality control

Donald A. Vincent, Robotic Industries Associations, Ann Arbor, Michigan, Associations, robotic

John Vranish, Naval Surface Weapons Center, Dahlgreen, Virginia, Deriveters of aircraft wings, robotic

Kenneth J. Waldron, The Ohio State University, Columbus, Ohio, Arm, design of

Charles Wampler, General Motors Research Laboratories, Warren, Michigan, Teleoperators, supervisory control

J. C. Wang, Idaho State University, Pocatello, Idaho, Control strategies

S. H. Wang, University of California, Davis, California, Flexible robots, control of

John Watteau, University of California, Los Angeles, California, Productivity John G. Webster, University of Wisconsin, Madison, Wisconsin, Space robots, research; Teleoperator control using telepresence

John A. White, Georgia Institute of Technology, Atlanta, Georgia, Material handling

Daniel E. Whitney, The Charles Stark Draper Laboratory, Cambridge, Massachusetts, Part mating theory; Remote center compliance devices

Wilbert E. Wilhelm, The Ohio State University, Columbus, Ohio, Conveyor tracking

Theodore J. Williams, Purdue University, West Lafayette, Indiana, Economics, robot market and industry

Michael Wodzinski, Selspot Systems (Selcom), Troy, Michigan, Accuracy R. F. Wolffenbuttel, Technishe Hogeschool, Delft, The Netherlands, Sensors, color sensing

Janet Worthington, West Virginia Institute of Technology, Fayetteville, West Virginia, Maintenance and repair, robotic

Chi-Huar Wu, Northwestern University, Evanston, Illinois, Compliance Robert M. Wygant, Western Michigan University, Kalamazoo, Michigan, Ergonomics, robot selection

Yaming Yang, Washington State University, Pullman, Washington, Teaching a robot

R. Young, Memorial Medical Center, Long Beach, California, Surgery, robots in

Clara Yu, Octy, Inc., Fairfax Station, Virginia, Vision systems, programming Bernard P. Zeigler, The University of Arizona, Tuscon, Arizona, Design and modeling concepts

M. Carl Ziemke, University of Alabama, Huntsville, Alabama, Teleoperators, research

Nello Zuech, Vision Systems International, Yardley, Pennsylvania, Vision systems, theory

FOREWORD

Looking Ahead

In 1939, when I was 19 years old, I began to write a series of science fiction stories about robots. At the time, the word robot had been in existence for only 18 years; Karel Capek's play, R.U.R., in which the word had been coined, having been performed for the first time in Europe in 1921. The concept, however, that of machines that could perform tasks with the apparent "intelligence" of human beings, had been in existence for thousands of years.

Through all those years, however, robots in myth, legend, and literature had been designed only to point a moral. Generally, they were treated as examples of overweening pride on the part of the human designer; an effort to accomplish something that was reserved to God alone. And, inevitably, this overweening pride was overtaken by Nemesis (as it always is in morality tales), so that the designer was destroyed, usually by that which he had created.

I grew tired of these myriad-told tales, and decided I would tell of robots that were carefully designed to perform certain tasks, but with *safeguards built in;* robots that might conceivably be dangerous, as any machine might be, but no more so.

In telling these tales, I worked out, perforce, certain rules of conduct that guided the robots; rules that I dealt with in a more and more refined manner over the next 44 years (my most recent robot novel, *The Robots of Dawn*, was published in October 1983). These rules were first put into words in a story called "Runaround," which appeared in the March 1942, issue of *Astounding Science Fiction*.

In that issue, on page 100, one of my characters says, "Now, look, let's start with the three fundamental Rules of Robotics . . ." and he proceeds to recite them. (In later stories, I took to referring to them as "the Three Laws of Robotics" and other people generally say "Asimov's Three Laws of Robotics.")

I am carefully specific about this point because that line on that page in that story was, as far as I know, the very first time and place that the word *robotics* had ever appeared in print.

I did not deliberately make up the word. Since *physics* and most of its subdivisions routinely have the "-ics" suffix, I assumed that "robotics" was the proper scientific term for the

systematic study of robots, of their construction, maintenance, and behavior, and that it was used as such. It was only decades later that I became aware of the fact that the word was in no dictionary, general or scientific, and that I had coined it.

Possibly every person has a chance at good fortune in his life, but there can't be very many people who have had the incredible luck to live to see their fantasies begin to turn into reality.

I think sadly, for instance, of a good friend of mine who did not. He was Willy Ley who, for all his adult life was wedded to rocketry and to the dream of reaching the moon; who in his early twenties helped found rocket research in Germany; who, year after year wrote popular books on the subject; who, in 1969, was preparing to witness the launch of the first rocket intended to land on the moon; and who then died six weeks before that launch took place.

Such a tragedy did not overtake me. I lived to see the transistor invented, and solid-state devices undergo rapid development until the microchip became a reality. I lived to see Joseph Engelberger (with his interest sparked by my stories, actually) found Unimation, Inc., and then keep it going, with determination and foresight, until it actually constructed and installed industrial robots and grew enormously profitable. His devices were not quite the humanoid robots of my stories, but in many respects they were far more sophisticated than anything I had ever been equipped to imagine. Nor is there any doubt that the development of robots more like mine, with the capacities to see and to talk, for instance, are very far off.

I lived to see my Three Laws of Robotics taken seriously and routinely referred to in articles on robotics, written by real roboticists, as in a couple of cases in this volume. I lived to see them referred to familiarly, even in the popular press, and identified with my name, so that I can see I have secured for myself (all unknowingly, I must admit) a secure footnote in the history of science.

I even lived to see myself regarded with a certain amount of esteem by legitmate people in the field of robotics, as a kind of grandfather of them all, even though, in actual fact, I am merely a chemist by training and a science-fiction writer by choice—and know virtually nothing about the nuts and bolts of robotics; or of computers, for that matter.

But even after I thought I had grown accustomed to all of

FOREWORD

this, and had ceased marveling over this amazing turn of the wheel of fortune, and was certain that there was nothing left in this situation that had the capacity to surprise me, I found I was wrong. Let me explain . . .

In 1950 nine of my stories of robots were put together into a volume entitled *I*, *Robot* (the volume, as it happens, that was to inspire Mr. Engelberger).

On the page before the table of contents, there are inscribed, in lonely splendor *The Three Laws of Robotics*:

- 1. A robot may not injure a human being, or, through inaction, allow a human being to come to harm.
- A robot may obey the orders given it by human being except where such orders would conflict with the First Law.
- 3. A robot must protect its own existence as long as such protection does not conflict with First or Second Law.

Never, until it actually happened, did I ever believe that I would really live to see robots, really live to see my three laws quoted everywhere.

Nor did it ever occur to me that I would live to see a vast three-volume *International Encyclopedia of Robotics* in which there would be enormous quantities of data and to which I would write the foreword (one that has already appeared in essence in the *Handbook of Industrial Robotics*, edited by Shimon Y. Nof).

It takes no great imagination to see that the *Encyclopedia* will increase in length and detail from edition to edition.

I see the world, and the human outposts on other worlds and in space, filled with cousin-intelligences of two entirely different types. I see silicon-intelligence (robots) that can manipulate numbers with incredible speed and precision and that can perform operations tirelessly and with perfect reproducibility; and I see carbon-intelligence (human beings) that can apply intuition, insight, and imagination to the solution of problems on the basis of what would seem insufficient data to a robot. I see the former building the foundations of a new, and unimaginably better society than any we have ever experienced; and I see the latter building the superstructure, with a creative fantasy we dare not picture now.

I see the two together advancing far more rapidly than either could alone. And though this, alas, I will not live to see, I am confident our children and grandchildren will, and that future editions of this *Encyclopedia* will detail the process.

ISAAC ASIMOV New York, New York

PREFACE

Robotics and automation are critical ingredients in the world's efforts towards an improved standard of living for all. Automation, the automatic operation of processes, and robotics, which includes the manipulator, controller and associated devices, are all critical to effective operation of our plants, factories, and institutions. In this *Encyclopedia* we have taken both an encyclopedic and international view of this field of robotics. Thus, we include numerous articles written by international experts and have striven to include all the associated theoretical aspects of the field as well as most of the present and future applications of robots in the factory, office, and home.

The International Encyclopedia of Robotics defines the discipline and the practice of robotics by bringing together the core of knowledge and practice from the field and all closely related fields. The Encyclopedia is written primarily for the professional who seeks to understand and use robots and automation. The Encyclopedia has made significant contributions to the literature, not only because it brings many disciplines into one comprehensive reference, but also because it contains many articles that bring new or fresh insights.

The articles and the authors invited to write them were chosen with the cooperation of an editorial advisory board of distinguished authorities. The author of each article is a recognized research expert on the topic. Each article had a bibliography and extensive cross-references to other articles. The reader may start with almost any article and be led by cross-references to almost every other article in the *Encyclopedia*. There are more than 2000 tables and figures. Stressing readability, accuracy, and completeness of facts as well as overall usefulness of material, this great work brings you the result of years of labor and experience.

I became involved in the project to develop this *Encyclopedia* in the fall of 1984 when I was approached by Martin Gray-

son of John Wiley & Sons, Inc., and Professor Shimon Nof of Purdue University. Although I was warned by several people that this would involve a great effort, the opportunity to help create a definitive and comprehensive view of the field, authored by a wide variety of experts, each writing on his or her own area of expertise, and the promise of significant help from Wiley's Encyclopedia Department lured me onward. With the excellent assistance of Shimon Nof, the consulting editor, we put together an outstanding team of writers and reviewers. Michalina Bickford joined us as the managing editor and performed superbly.

Robotics is a relatively young field, and still has controversy about what it is and about what constitutes good and valuable research and application. Some researchers felt that an encyclopedia was premature. There was some controversy about the selection of articles. Nevertheless, I was extremely gratified with the number of people who were willing to take time from their already busy schedules to write and to review articles. Those involved constitute a significant percentage of all active practioners, from all the different companies and major research institutes and universities.

I am grateful to many people whose efforts have gone into making this *Encyclopedia*: Shimon Nof and Martin Grayson, who started it; the members of the editorial board, who defined it; Michalina Bickford, who managed it all; and the authors and reviewers, who created it.

Finally, my sincere appreciation goes to Joy, my wife who, as a humanist, has questioned and refined my views of the benefits and uses of robots, automation, and machines in the workplace and elsewhere.

RICHARD C. DORF Davis, California

CONVERSION FACTORS, ABBREVIATIONS AND UNIT SYMBOLS

Selected SI Units (Adopted 1960)

Quantity	Unit	Symbol	Acceptable equivalent
BASE UNITS			
length	${f meter}^{\dagger}$	m	
mass [‡]	kilogram	kg	
time	second	s	
electric current	ampere	Α	
thermodynamic temperature§	kelvin	K	
DERIVED UNITS AND OTHER ACCEPTABLE UNITS			
*absorbed dose	gray	Gy	J/kg
acceleration	meter per second squared	m/s^2	
* activity (of ionizing radiation source)	becquerel	Bq	l/s
area	square kilometer	km^2	
	square hectometer	hm^2	ha (hectare)
	square meter	m^2	
density, mass density	kilogram per cubic meter	kg/m ³	g/L; mg/cm ³
* electric potential, potential difference, electromotive force	volt	v	W/A
* electric resistance	ohm	Ω	V/A
* energy, work, quantity of heat	megajoule	MJ	
	kilojoule	kJ	
	joule	J	$N \cdot m$
	electron volt ^x	eV^x	
	kilowatt hour ^x	$kW \cdot h^x$	
* force	kilonewton	kN	
	newton	N	$kg \cdot m/s^2$
* frequency	megahertz	MHz	
	hertz	Hz	l/s
heat capacity, entropy	joule per kelvin	J/K	
heat capacity (specific), specific entropy	joule per kilogram kelvin	$J/(kg \cdot K)$	
heat transfer coefficient	watt per square meter		
	kelvin	$W/(m^2 \cdot K)$	
linear density	kilogram per meter	kg/m	
	xiii		

magnetic field strength moment of force, torque momentum * power, heat flow rate, radiant flux power density, heat flux density, irradian * pressure, stress sound level specific energy specific volume surface tension thermal conductivity velocity viscosity, dynamic volume	megapascal kilopascal pascal decibel joule per kilogram cubic meter per kilogram newton per meter watt per meter kelvin meter per second kilometer per hour pascal second millipascal second cubic meter cubic decimeter	A/m N·m kg·m/s kW W W/m² MPa kPa Pa dB J/kg m³/kg N/m W/(m·K) m/s km/h Pa·s mPa·s m³ dm³	J/s L(liter)	
	cubic centimeter	cm ³	mL	

^{*} The asterisk denotes those units having special names and symbols.

$$t = T - T_0$$

where T is the thermodynamic temperature, expressed in kelvins, and $T_0 = 273.15$ by definition. A temperature interval may be expressed in degrees Celsius as well as in kelvins.

In addition, there are 16 prefixes used to indicate order of magnitude, as follows:

M	Iultiplication				
	ector	Prefix	Symbol	Note	
10	O ¹⁸	exa	E		
10	0 ¹⁵	peta	P		
	012	tera	${f T}$		
10	0^{9}	giga	\mathbf{G}		
	06	mega	M		
10	0^3	kilo	k		
	0^2	hecto	$\mathbf{h^a}$		
10		deka	da ^a		
	0^{-1}	deci	$\mathbf{d^a}$		
	0-2	centi	c ^a		
10	0^{-3}	milli	m		
	0^{-6}	micro	μ		
	0 ⁻⁹	nano	n		
10	0^{-12}	pico	р		
	0^{-15}	femto	p f		
	0-18	atto	а		

^a Although hecto, deka, deci, and centi are SI prefixes, their use should be avoided except for SI unit-multiples for area and volume and nontechnical use of centimeter, as for body and clothing measurement.

[†] The spellings "metre" and "litre" are preferred by ASTM; however "er-" is used in the Encyclopedia.

[‡] "Weight" is the commonly used term for "mass."

[§] Wide use is made of "Celsius temperature" (t) defined by

^x This non-SI unit is recognized by the CIPM as having to be retained because of practical importance or use in specialized fields.

Conversion Factors to SI Units

To convert from	To	Multiply by
acre	square meter (m ²)	4.047×10^3
angstrom	meter (m)	$1.0 \times 10^{-10\dagger}$
atmosphere	pascal (Pa)	1.013×10^{5}
bar	pascal (Pa)	$1.0 \times 10^{5\dagger}$
barn	square meter (m^2)	$1.0 imes 10^{-28\dagger}$
barrel (42 U.S. liquid gallons)	cubic meter (m ³)	0.1590
Btu (thermochemical)	joule (J)	1.054×10^3
bushel	cubic meter (m ³)	3.524×10^{-2}
calorie (thermochemical)	joule (J)	4.184
centipoise	pascal second (Pa·s)	$1.0 \times 10^{-3\dagger}$
cfm (cubic foot per minute)	cubic meter per second (m ³ /s)	4.72×10^{-4}
cubic inch	cubic meter (m ³)	1.639×10^{-5}
cubic foot	cubic meter (m ³)	2.832×10^{-2}
cubic yard	cubic meter (m)	0.7646
dram (apothecaries')	kilogram (kg)	3.888×10^{-3}
dram (avoirdupois)	kilogram (kg)	1.772×10^{-3}
dram (U.S. fluid)	cubic meter (m ³)	3.697×10^{-6}
dyne	newton (N)	$1.0 imes 10^{-5\dagger}$
dyne/cm	newton per meter (N/m)	$1.0 imes 10^{-3\dagger}$
fluid ounce (U.S.)	cubic meter (m ³)	2.957×10^{-5}
foot	meter (m)	0.3048^\dagger
gallon (U.S. dry)	cubic meter (m ³)	4.405×10^{-3}
gallon (U.S. liquid)	cubic meter (m ³)	$3.785 imes 10^{-3}$
gallon per minute (gpm)	cubic meter per second (m ³ /s)	$6.308 imes 10^{-5}$
Barron per minute (BP)	cubic meter per hour (m³/h)	0.2271
grain	kilogram (kg)	$6.480 imes 10^{-5}$
horsepower (550 ft·lbf/s)	watt (W)	$7.457 imes 10^2$
inch	meter (m)	$2.54 imes10^{-2\dagger}$
inch of mercury (32°F)	pascal (Pa)	$3.386 imes 10^3$
inch of water (39.2°F)	pascal (Pa)	2.491×10^{2}
kilogram-force	newton (N)	9.807
kilowatt hour	megajoule (MJ)	3.6^{\dagger}
liter (for fluids only)	cubic meter (m ³)	$1.0 imes 10^{-3\dagger}$
micron	meter (m)	$1.0 imes 10^{-6\dagger}$
mil	meter (m)	$2.54\times10^{-5\dagger}$
mile (statute)	meter (m)	1.609×10^{3}
mile per hour	meter per second (m/s)	0.4470
millimeter of mercury (0°C)	pascal (Pa)	$1.333 imes 10^{2\dagger}$
ounce (avoirdupois)	kilogram (kg)	$2.835 imes 10^{-2}$
	kilogram (kg)	3.110×10^{-2}
ounce (troy)	cubic meter (m ³)	2.957×10^{-6}
ounce (U.S. fluid)	newton (N)	0.2780
ounce-force	cubic meter (m ³)	8.810×10^{-8}
peck (U.S.)	kilogram (kg)	1.555×10^{-3}
pennyweight	cubic meter (m ³)	5.506×10^{-4}
pint (U.S. dry)	cubic meter (m ³)	4.732×10^{-4}
pint (U.S. liquid)		0.10^{\dagger}
poise (absolute viscosity)	pascal second (Pa·s)	0.4536
pound (avoirdupois)	kilogram (kg)	0.3732
pound (troy)	kilogram (kg)	0.3732 4.448
pound-force	newton (N)	6.895×10^3
pound-force per square inch (psi)	pascal (Pa)	6.895×10^{-1} 1.101×10^{-1}
quart (U.S. dry)	cubic meter (m ³)	9.464×10^{-4}
quart (U.S. liquid)	cubic meter (m³)	9.404 × 10
quintal	kilogram (kg)	$1.0 imes10^{2\dagger}$

rad	gray (Gy)	$1.0 imes 10^{-2\dagger}$
square inch	square meter (m^2)	6.452×10^{-4}
square foot	square meter (m ²)	$9.290 imes 10^{-2}$
square mile	square meter (m ²)	$2.590 imes 10^6$
square yard	square meter (m ²)	0.8361
ton (long, 2240 pounds)	kilogram (kg)	$1.016 imes 10^3$
ton (metric)	kilogram (kg)	$1.0 imes10^{3\dagger}$
ton (short, 2000 pounds)	kilogram (kg)	$9.072 imes 10^2$
torr	pascal (Pa)	$1.333 imes 10^2$
yard	meter (m)	0.9144^{\dagger}

[†] Exact.

ABBREVIATIONS AND ACRONYMS

A	ampere	DDM	direct drive motor
AACW	active adaptive compliance wrist	DMA	direct memory access
ac	alternating current (noun)	DNC	direct numerical control
a-c	alternating current (adjective)	DOD	Department of Defense (U.S.)
ACI	automatic component insertion	DOF	degree of freedom
AFR	Air Force Regulation	DOT	Department of Transportation (U.S.)
AGV	automated guided vehicle	DOM	design of maintenance
AGVS	automated guided vehicle system		
AI	artificial intelligence	EEC	European Economic Community
AMR	autonomous mobile robot	eg	For example (est gratia)
ANSI	American National Standards Institute	EIA	Electronic Industries Association
ASME	American Society of Mechanical Engineers	EOD	explosive ordnance disposal
ASTM	American Society for Testing and Materials	EPA	Environmental Protection Agency (U.S.)
ATC	automatic tool changes	est	estimated
ATE	automotive test equipment	ESU	emergency service unit
	,	250	
avg	average	${}^{ m o}{f F}$	degrees Fahrenheit
BCD	binary coded decimal	FAA	Federal Aviation Administration (U.S.)
	basic probability assignment	FDM	frequency division multiplexing
bpa bps	bits per second	FMC	flexible manufacturing cell
BWR	boiling water reactor	FMS	flexible manufacturing system
DWK	bolling water reactor	FOF	factory of the future
°C	degrees Celsius	ft	foot
ca	approximately (circa)	ft·lbf	foot-pound force (1.356 J)
CAD	computer-aided design	FTAM	file, transfer, access, and management
CAE	computer-aided engineering		, , , , ,
CAM	computer-aided manufacturing	g	gravitational acceleration
CAPP	computer-aided production planning	g	gram
CAT	computer-aided testing	gal	gallon (3.785 L in the U.S.)
CFR	Code of Federal Regulations	GC	gas chromatography
CIM	computer-integrated manufacturing	GDB	global data base
CL	control law	gf	gram force (0.0098 N)
CMM	coordinate measuring machine	GNP	Gross National Product
CMU	Carnegie Mellon University	GPS	general problem solver
CNC	computer numerical control	gy	$\operatorname{gray}(10^{-2})$
CPPP	computerized production process planning	87	8
CPU	central processing unit; control process unit	h	hour
CRC	computer robot control	hp	horsepower (746 W)
CRT	cathode ray tube	Hz	Hertz (cycles per second)
CKI	cathode ray tube		Library (cycles per library)
DAC	digital to analogue converter	IC	integrated circuit
dc	direct current (noun)	ICAO	International Civil Aviation Organization
d-c	direct current (adjective)	IEEE	Institute of Electrical and Electronic Engineers
DCF	discounted cash flow	I/O	integrated circuit
DOF	discoulted cash now		

		DOM	pulse code modulation
IQR	interquartile range	PCM	pound (force) per square inch (6.893 kPa)
IRR	internal rate of return	psi	psi pressure gauge
IRS	Internal Revenue Service (U.S.)	psig PWA	printed wire assembly
ISO	International Organization for Standardization	PWM	pulse-width modulation
IWP	intelligent work in process	PWR	pressure water reactor
_	I = 1. (ones)	1 1120	F
J	Joule (energy)	qv	which see (quo vide)
JIT	Just-in-time	-	
JPL	Jet Propulsion Laboratory	RAM	random access memory
K	Kelvin kilogram-force (9.086 N)	RCC	remote center compliance
kgf		RCMC	resolved motion rate control
kJ	kilojoule kilometer	R&D	research and development
km	kilopascal (0.145 psi)	rf	radio frequency (noun)
kPa	Kilopascai (0.140 psi)	r-f	radio frequency (adjective)
	liter (column)	RGS	remote guidance system
L	liter (volume) local area networks	rh	relative humidity
LAN		RIA	Robotics Institute of America
lb	pound (mass) (453.6 g)	RLL	relay ladder language
lbf	pound force (4.448 N)	RM	remote mobile investigator
LCD	liquid crystal display	ROI	return on investment
LED	light-emitting diode	ROM	read only memory
LTD	long term debt	RPS	robot programming system
LTP	local tracking problem	RPV	remotely piloted vehicle
LVDT	linear variable differential transformer	RTM	Robot time and motion
m	meter		
m MAP	manufacturing automation protocol	S	second
MARR	minimum attractive rate of return	SAT	symmetric axis transform
max	maximum	SCA	sensor-controlled automation
	milligram	SCARA	selective compliance-assembly robot arm
mg MHS	material handling system	SIC	Standard Industrial Classification
MICAPP	microcomputer-assisted process planning pro-	SMC	surface mounted components
MICAFF	gram	SMD	surface mount devices
	minute; minimum	SME	Society of Manufacturing Engineers
min	master laboratory station	SOC	self organizing control
MLS	manipulating message format standard	SRBP	synthetic resin bonded paper
MMFS	maintenance manipulator system	SRI	Stanford Research Institute
MMS		SUNY	State University of New York
MP	microprocessor millisecond	SUR	speech understanding research
ms	minisecond mean time between failures	SUS	speech understanding system
MTBF	mean time to repair		
MTTR	mean time to repair	t	metric ton
	Monday	${f T}$	temperature
N	Newton not available	\mathbf{TDL}	task description language
na	not available National Bureau of Standards	TDM	time division multiplexing
NBS		TMI	Three Mile Island
NC	numerically controlled	TMV	technical maintenance vehicle
NRC	Nuclear Regulatory Commission (U.S.)		
NYPD	New York City Police Department	UIMS	user interface management system
		uv	ultraviolet
OD	outer diameter	UVS	unmanned vehicle system
OI	operation interface	0,0	
OLP	off-line program	WIP	work in progress
OSHA	Occupational Safety and Health Administration	WM	working memory
	(U.S.)	V	volt
OTA	Office of Technology Assessment (U.S.)	V VLSI	very large scale integration
			versus
Pa	Pascal (pressure)	vs	. 52.5
PC	programmable controller; programmable logic	yr	year
	controller; personal computer	J*	