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Preface

This book grew out of the notes which I used to teach a short course in
semiconductor theory at the American University, Washington, DC. The
classes were made up of first-year graduate students in physics and engi-
neering, many of whom were already working in semiconductor-related
fields they had entered so-to-speak by the “back door,” i.e. none had a
formal background in semiconductors. It was our intention to develop a
course in which these students and those planning to enter the field of
semiconductors would get a mathematically oriented introduction to the
methods, tools, and concepts which are fundamental to the theory of solids
in general, with emphasis on applications to semiconductors.

The manuscript is aimed at students who have had an undergraduate
modern physics course and an introductory course in thermodynamics.
Chapters 1 and 2 are intended to serve as a review and not as a complete
introduction. I have utilized many of the arguments and figures from a
variety of sources and in many instances have modified the figure-labeling
to correspond to presently accepted values and notation.

I would like to thank Herbert D. Curchack for much encouragement,
Drs. Fernand Bedard, Charles Davis, Clyde Morrison, and Lynwood P.
Randolph, and students Daniel J. Lanigan and James D. Penar for editing
portions of the manuscript.



Preface to the Softcover Version

This softcover version of Introduction to the Quantum Theory of Semicon-
ductors comes twenty-six years after the book made its debut in 1972.
During the intervening quarter century, we have seen an unprecedented
worldwide growth of information technology, primarily based on the unique
physics of semiconductors. As I sit at one of my three home computers
writing this new preface, I look back at the field when the hardcover version
was printed; the desktop computer was not yet developed, semiconductor
lasers were in their infancy, and the power of these materials to accelerate
the rate of change of all technologies, and provide a worldwide informa-
tion link that would influence world politics, was not yet dreamed of.

The book was written to cover in detail the many basic classical pro-
cesses and the few known non-classical processes that enable all semicon-
ductor devices to operate. For this reason, a quarter century later, it retains
its unique ability to instruct students just entering the field as well as sea-
soned semiconductor engineers looking for new solutions.

Within the next ten years, the speed of computer chips will come up
against a limit defined primarily by the velocity of an electron, and faster
computers will be possible only through the development of new processes
not subject to classical limits. I encourage students and engineers alike to
work toward the development of such non-classical processes. In fact, one
of these enabling processes has already been seminally developed—the
ability of a particle to tunnel through an energy barrier in imaginary time.
I believe that the next revolution in semiconductor technology will come
as a result of the exploitation of such non-classical processes.
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2 INTRODUCTION TO THE QUANTUM THEORY OF SEMICONDUCTORS

1.1 THE STATE OF A QUANTUM MECHANICAL SYSTEM

UNDERSTANDING of a subject or technology can be achieved only after an
expenditure of effort to learn the language by which it may most conven-
iently be discussed. Because solid state physics is to a large measure based
on the quantum theory, the theory of solids may be discussed by utilizing
any of the quantum mechanical representations. For the student to work
effectively in the field of solids, he must have a working knowledge not only
of the wave-mechanical Schrédinger representation, but of all of the methods
by which solids may be described. For this reason we shall start with a review
of the abstract quantum theory as proposed by Dirac! from which all re-
presentations may be derived.

We shall assume that there exists a hypothetical many-dimensional space
each point of which fully describes the state of our quantum mechanical
system at time ¢. The state is assumed to be fully described by the coordina-
tes of the particular point in the space or equivalently by a vector generated
from the origin to the point. The many-dimensional vector that describes
our state is called a ket vector and is written as [4). Thus |4) represents
the state 4 of a quantum mechanical system. For example, as shown in
Figure 1.1, the three dimensional velocity vector

Vo> = a|Px> + by |1V, + ¢y V2D 1.1.1)

where |V,>, |V,), and |P,) are the orthogonal unit velocity vectors (or
basic vectors) which define our allowed velocity space, completely defines
the state of the velocity of a system at any time ¢.

The Dual Space ,
In our study of semiconductor physics we shall make frequent use of the
fact that for every vector space a unique dual space may be defined. We
shall call the vectors in our dual space bra vectors and write them as {B|.
We shall assume that for every ket vector c¢|4) in our original space there
corresponds a bra vector {4|c*, where c* is the complex conjugate of the
constant c. In general, however, the ket vector is a complex quantity from
which one may not be able to separate the real from the imaginary parts.
Thus we call the bra (4| the complex imaginary of |4) or |4).

We shall define the scalar product between two N dimensional vectors in

the same space as N
4> =iZIal 14>

N (1.1.2)
|B> = ngb, |AJ>
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where a; and b; are constants and
N
(A|B) = Y aib, (1.1.3)
k=1

Thus defined, the scalar product between two ket vectors generates a number.
Of course, the scalar product of the real velocity vector | V,,,» with any of the
basic ket vectors |P)), |P,> or |P(,,) yields the component of |V, in
the direction of the basic ket (see Figure 1.1), e.g.

<V(x)|V(t)> = dqu
PV = by (1.1.4)
(V(,,I V> = ¢

In particular we shall make use of a dual space made up of basic vectors
which are defined only by their scalar products with the basic ket vectors
of the original space.

For example, choose a set of numbers, the i** one of which we designate
by ¢;, and each of which is a linear function of a single ket vector 4.

)

V>

A
e()=<Vglv>

Figure 1.1 The velocity of a system represented as a vector in velocity space.
]_'
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Each ¢, may be looked on as the result of the scalar product of the i** basic
ket vector with some bra vector (B, i.e.,

& = (B4 (1.5)

The set of bra vectors thus generated is the dual space. Our dual space is a
linear function of the original ket vectors. As an example, Figure 1.2 shows
the relation between a real two dimensional space defined by the basic kets
|£) and |7) and its dual space defined by the basic bras {B,| and {5,]|.

The length of a ket vector is as usual defined as the square root of its
scalar product with its conjugate bra

(A|A)* = length |4) (1.1.6)

- a A
#,=<B,1> IR

”~
|
<62 o =ByI5>

Figure 1.2 Relation between the basic kets |x) any |3> and the dual space basic vectors
<By| and |B,).
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In most application, it is convenient to normalize the length of our ket
vectors such that

KAlA)> =1 (1.1.7)

1.2 LINEAR OPERATORS

An operator is a quantity that denotes an operation to be performed on a
function. An operator «, acting on a ket vector from the left yields a ket
that may differ both in magnitude and direction from the original

o ldo) = |4) (1.2.1)

The operator is always written to the left of the ket.
We will concern ourselves mainly with linear operators. The conditions
for linearity may be written

«flA) + |BY)] =« |4) + «|B) (1.2.2)
alcldd] = cx 4> (1.2.3)

where ¢ is a number.
Linear operators may be added

[x + Bl14) =o |4) + B|4) (1.2.4)

Multiplication of linear operators e.g. «f is carried out by performing first
the operation § and then operating on the result with «. The resultant opera-
tor «f need not be linear.

af |4) = «[f |4D] (1.2.5)

Let us investigate, for example, the result of the successive operation of the
two displacement operators I, and I', which are defined to produce unit
displacement of a vector in the x and 6 directions, respectively. As can be
seen from Figure 1.3, the order in which the displacements of the vector R
are produced is immaterial, i.e.,

I'TR=T,I' R (1.2.6)

for the result R’ of the multiplicative operation has the same orientation
no matter which order of operation is chosen. However, note that linear
operators do not necessarily commute thus their order must be preserved.
For example, consider the two independent operations 1. taking a breath
and 2. putting your head in a bucket of water. Clearly, performing 2. first
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and then 1. yields a quite different result then performing the operations in
the opposite order.

Yo

A

X

Figure 1.3 The successive operation on R with the unit translation operators I, and I'y
showing their commutative property.

PROBLEM

(A) Show that the operators
7}

0
. d B=r=
« % and B P

commute by operating on the vector
A = iy?z® -+ ]x222 + kx?y?
(B) Similarly show that
o’ =x and B =09/ox
do not commute.
Linear operators may also act on bra vectors and are defined to do so
only from the right

[81B>] = <BIf 1.2.7)

where f is the adjoint of 8.
A linear operator may act on a ket or bra vector in such a way as to
produce a vector unchanged in direction but changed only in magnitude

aldy =ald) (1.2.8)
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where a is a constant called the eigenvalue of the linear operator «, and the
ket |4) is an eigenket of x. A similar situation exists for bra vectors.

PROBLEM

Determine if the vector R, where
ealx n ebrv ec!z

+i—+k

b y z

R=1{

is an eigenvector of the operator 9/0t.

A real linear operator is a real operator whose eigenvalues are real
numbers. Therefore, as in equation (1.2.8), if « is a real linear operator, a is
a real number.

It is easily shown that the eigenvalue a, associated with the eigenket of a
real linear operator « is the same as the eigenvalue associated with the eigen-
bra of the real linear operator @ by forming the complex imaginary of the
eigenvalue equation (1.2.8) which yields

Al & = {A| a* (1.2.9)

The Orthogonality Theorem

The orthogonality theorem states that two eigenvectors of a real linear
operator belonging to different eigenvalues are orthogonal. To prove this
we let & be a real linear operator, |4) be an eigenket belonging to the eigen-
value a and |B) be an eigenket belonging to the eigenvalue b. Thus we may
write the eigenvalue equations

§l4) = ald)
§1B> =b|B)

(1.2.10)

Taking the complex imaginary of 1.2.10
(Al & = {A|a (1.2.11)
and multiplying by |B) from the right, we find
4| §1B> = (Al a|B)
{A|§|B) = {4|b|B) (1.2.12)

and

Subtracting the equations in (1.2.12) we find
{A|B)(@a—b) =0 (1.2.13)
Thus, if @ # b, the scalar product {4|B) is equal to zero and the eigenkets
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|4> and |B) are orthogonal. When |A) and |B) are orthonormal we can
generalize equation (1.2.13) for the case of discrete eigenvalues a and b

CA|B) = b,,5 1.2.14)

where 6, , is the Kronecker delta which has the value O for a # b, and 1 for
a = b. When a = b, |A) and |B) are called degenerate.

For the case where we have a continuous range of eigenvalues we may
write

(A'|A"Y = 8@’ — a”) (1.2.15)
where d(@’ — a’’) is the Dirac delta for continuous eigenvalues and is equal

to zero except when @’ = @'/, in which case it has the value 1 and |4")
and |4"’) are again degenerate. Note that

+ oo
f Bar—arydd =1 (1.2.16a)
- 00
and
+ 0
f S Ox-ad@% = fiay (1.2.16b)
Observables

Two important assumptions made by Dirac in order to connect his abstract
mathematics with experience are that (1) measurable quantities correspond
to the eigenvalues of real linear operators. These types of operators are
called observables. (2) If the eigenvalue of a real linear operator & is measur-
able with the system in a particular state, the act of making a measurement
will cause the system to jump into one of a number of allowed states. These
states into which the system may jump are assumed to be such that the ori-
ginal state is dependent upon them and thus each must be also an eigenstate
of &. Thus the original state is dependent on eigenstates of &. Since the ori-
ginal state may be any state, we conclude that any state must be dependent
on the eigenstates of an observable, and thus an observable must have a
complete set of eigenstates, i.e. that any other state be constructable from
them. For example, the unit vectors £, j and k£ form a complete set in
cartesian space since any other cartesian vector may be constructed from
a linear combination of these vectors.
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Where the eigenvalues of the observable & consist of a discrete set of
numbers in a certain range such as the energy levels of a harmonic oscillator,
the condition that any state |P) is dependent on the complete set of kets
14, |42)...|4;)...|4,) is written

|P) ='_Z"1c, |4 1.2.17)

where ¢, is a number.

If the eigenvalues b’ of an observable £ consist of all of the numbers in a
certain range, for example the spatial coordinates of an electron, the condi-
tion that any ket |P) is dependent on the complete set of kets | B, ),|B3)...
|B:>--- | B,y is expressed

|P) = f |B’> db’ (1.2.18)

where we integrate over the range of eigenvalues b’ necessary to construct
|P.

There may exist a state |P) such that it is dependent upon sets of both
discrete and continuous states, in which case we write

|P> =t_z cild) + f|B’>db’ (1.2.19)

We shall postulate that if a quantum mechanical system is in an eigenstate
|4) of a real linear operator which belongs to the eigenvalue a, a measure-
ment of the real linear operator will always give the number a. A real linear
operator “which may be measured” is called an observable and thus any
measurement of an observable must yield one of its eigenvalues.

Therefore the eigenstates of an observable form a complete set since any
state is dependent on them. Conversely, any real linear operator whose eigen-
states form a complete set is an observable.

We can generate an extremely useful linear operator from a complete
set of n discrete or n continuous states. Let us form the sum

i;m <4yl (1.2.20)
and multiply from the right by the ket |4,

’;11A1> <A1IAJ> =t;l|Ai> 51.1 = IAJ> (1-2~21)



