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Preface

Applications of College Mathematics is intended for a first course in college-level
mathematics for students of management and the life and social sciences. The only
prerequisite is intermediate algebra. Chapter 1 of the text provides a brief review
of algebra for those students who need it.

An important feature of this book is the organization of the material into
sections and exercise sets. Most numbered sections are divided into subsections,
and the exercises at the end of each section are grouped according to the sub-
sections. We do this for two reasons. First, by reading a subsection and working
the exercises assigned to it before proceeding to the next subsection, the student can
master the concepts presented one at a time in the order in which they are needed.
We think this will contribute to a more positive and less frustrating learning
experience than is often the case. Second, the arrangement offers the instructor a
great deal of flexibility in the choice of topics to be covered and exercises to be
assigned.

Other features of this text include:

Emphasis on Applications. Many topics are introduced via their applications,
and applications are given whenever possible. An index of applications is given on
the inside covers of the text.

Emphasis on Graphing. We believe that students at this level must be encour-
aged to draw and interpret graphs. Toward this end we have included more figures
than are usually encountered in a text of this type and we have emphasized graphing
in the exercises.

Many Examples. Every mathematical concept and technique used is illustrated
with at least one example.

Many Exercises. We believe that students at this level need many drill and
applied exercises. Thus, there are over 3000 exercises in this text. Many of the
exercises, particularly those of an applied nature, have several parts. Answers to all
odd-numbered exercises can be found at the back of the book.

Review Exercises. Each chapter concludes with a set of review exercises de-
signed to test the student’s knowledge of the topics covered in the chapter. Answers
to all review exercises can be found at the back of the book.

Class-testing. This text has been class-tested for three years at Nichols College.

There are two supplements to this book: an Instructor’s Guide and a Computer
Problem-Solving Guide. The Instructor’s Guide contains answers to all the even-
numbered exercises in the text, as well as two sample examinations for each chap-
ter. Answers are provided for the sample examinations. The Computer Problem-
Solving Guide contains over 50 computer programs designed to aid in the solutions
of certain types of problems in the text. The programs are written in minimal
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Preface

BASIC and are exceptionally user-friendly. Each program is described, illustrated
with a sample run, and listed in full. The Guide also contains exercises and sug-
gestions for additional programs.

We would like to thank our colleagues at Nichols College, Professors Paul
Creegan and William Steglitz, for helping us class-test this book. Our thanks also
to Professor James Conrad and Mr. Gordon Benson of Nichols for their assistance.
We appreciate the comments and criticisms of the following reviewers: Leonard D.
Fountain, San Diego State University; Emma Garnett, Ball State University; Eu-
gene Jacobs, Illinois State University; Terry L. Jenkins, University of Wyoming;
Leonard J. Lipkin, University of North Florida; Robert A. Moreland, Texas Tech
University; R. H. Rodine, Northern Illinois University; Erik A. Schreiner, West-
ern Michigan University; Martha L. Stewart, University of North Carolina; and
Robert L. Taylor, University of South Carolina.

Finally, we would like to express to Mary Lu Walsh, Cathy Cantin, Elizabeth
Van de Kerkhove, and the rest of the staff at D. C. Heath and Company our sincere
thanks for their suggestions and support.

Donald L. Stancl
Mildred L. Stancl
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Review

This chapter consists of a brief review of number systems and algebra. A knowledge
of these topics is basic to an understanding of the remainder of this text, and we
urge you to read this chapter carefully in preparation for the material to come.

1.1 The Real Numbers

Number Systems

The natural numbers are the numbers
1,2,3,4;5,::

(The three dots . . . mean “and so on.”) The collection of all natural numbers is
called the natural number system and is symbolized by the letter N. It is the
simplest of the number systems we will use.

Another number system we will use is the integers. The integers are the
numbers

es—4,—3,-2,-1,0,1,2;3,4, . ..
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The collection of all integers is the system of integers, symbolized by the letter Z.
Note that every natural number is also an integer, and hence the system N of
natural numbers is contained within the system Z of integers. For this reason the
system N is sometimes called the system of positive integers.

Another useful number system is the rational numbers. A rational number is
a number that can be written in the form m/n, where m and n are integers and
n # 0. Some examples of rational numbers are the following:

7 824 741

3 L&
17 9 3> 137> ~ 1000

d 3

2

T

=
i

The collection of all rational numbers forms the system of rational numbers,
symbolized by the letter Q. Since every integer m may be written as m /1 and hence
is a rational number, it follows that the system Z of integers is contained in the
system Q of rational numbers.

Many numbers cannot be written in the form m/n, where m and # are integers.
Such numbers are not rational and hence are referred to as irrational numbers.
Some examples of irrational numbers are the following:

Vi, V5 N7, V3, o«

The system of real numbers consists of all rational numbers and all irrational
numbers. Thus, every real number is either a rational number or an irrational
number. We symbolize the real number system by the letter R. The relationships
among the system R and its various subsystems are depicted in Figure 1.1.

Since every rational number has a decimal representation which either termi-

nates, such as 3 = 0.625, or repeats, such as 3 = 0.3333 . . . , and since every
irrational number has a decimal representation which neither terminates nor re-
peats, such as 77 = 3.14159 . . . , the system R includes all decimal numbers. On
Figure 1.1
Real Numbers R
Rational Numbers Q Irrational Numbers
-7, —%, —ﬁ, 0, %, %, 35 %‘, etc. _3\/73 \/53 ™, etc.
Integers Z

sy =3 =2, =1,0, 1,2, 3,. ..

Natural Numbers N
152,3;4;...
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1.1 The Real Numbers 3

the other hand, it can be shown that every decimal number is the representation of
either a rational or an irrational number. Hence we may think of the real number
system as consisting of all possible decimal numbers.

The Real Line

The system of real numbers may be represented geometrically by a horizontal line
called the real line. To construct the real line we choose a convenient point on a
horizontal line to represent the number 0. This point is called the origin. We then
choose a convenient unit length and, starting at the origin, mark off this length on
the line over and over in both directions. The resulting points on the line represent
the integers. See Figure 1.2.

Figure 1.2 T T T T T T T T t T T
gu -5 -4 -3 -2 -l 0 1 2 3 4 5

The Real Line

Every real number corresponds to a point on the real line, and, conversely,
every point on the line corresponds to a real number.

(a) Plot the real numbers —%, —1, §, 1.5, 2.25, and  on the real line. These
numbers are plotted in Figure 1.3(a).

(b) What real numbers are represented by the points plotted in Figure 1.3(b)?
From left to right, the points plotted in the figure represent the numbers —3,
-1,-4%,3%,3,and 2.

Figure 1.3 _

i
< 4 15 225 ¢
et e e |
(a) -2 -1 0 1 2 3 4
et 4 : —+
(b) -2 -1 0 1 2 3 4

Exercises: 1 and 2.

Inequalities

The real line makes it possible to compare real numbers using inequalities. If r and s
are real numbers and if r lies to the left of s on the real line, we say that r is less than
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EXAMPLE 2

EXAMPLE 3

Review
s, written

r<s,
or that s is greater than r, written

s >r.

If r < 0, then r is a negative real number; if s > 0, then s is a positive real number.
If r is less than or equal to s, we write

r=s;
and if s is greater than or equal to r, we write
s=r.

Consider the real numbers, —4, —1, 2, 0, #, —1, V2, and 3. We plot these
numbers on the real line. See Figure 1.4.

Figure 1.4 P 3 V2
S
The following inequalities are true.
—-4<-1 0=0 3> 1 -1<0 -1= 3
-1>-4 020 -1=-1 i=0 I<V2

The following inequalities are false.

-1<—4 3= 2 3< 3 0= 2 —4 = -1

-1> 0 -i>-1 i>Vv2 3=-1 -1= }

Also, —4, —%, and —1 are negative real numbers, and 2, V2, 2, and 3 are
positive real numbers. The real number 0 is neither positive nor negative.

An inequality of the form r < s < tis a double inequality. It is true provided that
both 7 < sand s < ¢ are true. In other words, the double inequality » < s < tis true
if and only if r is to the left of 7 and s is between r and ¢ on the real line.

(a) The following double inequalities are zrue.
-2<-1<1 =-3= 0<4 1<i=2
-4< 5=5 1<V2<2 312<m<3.20

(b) The following double inequalities are false.

-2<-1< -} 2<1<3
3< 5= 4 -1<4<4
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(c) All inequality symbols in a double inequality should point in the same
direction. Therefore, it is not permissible to write statements such as
2 < 3 > 1. To express the inequality relationships among 2, 3, and 1 cor-
rectly, one should write 1 <2 <3o0r3>2> 1.

Exercises: 3 through 22.

Intervals

It is often convenient to consider all real numbers that lie between two given
numbers or all those greater than or less than a given number. Collections of real
numbers such as these are called intervals. For example, the collection of all real
numbers x such that 0 =< x < 1is an interval because it consists of all real numbers
between 0 and 1, including 0 but not including 1. Table 1.1 lists the various types
of intervals. The line diagram corresponding to each interval shows how the interval
is realized geometrically as a portion of the real line. Note that in the line diagrams
an open circle at the endpoint of an interval indicates that the endpoint is not part
of the interval, while a closed circle means that the endpoint is part of the interval.

The intervals correspond to the line diagrams below them.

2<x=<4 —3<x<1l x<2 x= -1
—Om— <f= —
2 4 -3 1 2 -1
Exercises: 23 through 30.
Table 1.1 Intervals
Interval Line Diagram
— OO
r=E=xX=J§ r s
r=x<s e Fid
r<x=<s *;—;—x
r<x<s —0——0-.$ x
s
x=r — O X
X =y 4
O
X <s r
f— e
x<s s
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Absolute Value

The absolute value of a real number is its distance from zero on the real line without
regard to whether the number lies to the right or to the left of zero. For example,
the real number 3 is at a distance of three from zero, as is the real number —3.
Hence the absolute value of 3 and the absolute value of —3 are both equal to 3. More
formally, we define the absolute value of a real number as follows:

Absolute Value

Let r be a real number. The absolute value of r, denoted |r|, is defined by

s ryifr =0
—r, if r <O0.

Note that if r is nonnegative the absolute value is r, which is 0 if r = 0 and
positive if r # 0. Furthermore, if r is negative, the absolute value is —r, which is
positive. It follows that, for any real number r,

r|=0ifr=20
and
|r| is positive if r # 0.
EXAMPLE s 12| =2 V2| = V2
|-2| = -(-2)=2 |-1.729| = —(-1.729) = 1.729
0j =0 6 — 4 =[2| =2
5l =3 4 -6 =|-2/=2

=3 =-(-H=3% @3N =|-23)|=|-6/=6

Exercises: 31 through 44.

Exercises 1.1

THE REAL LINE

1. Plot the following real numbers on a real line.



