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PREFACE

Some time ago I searched for a textbook for a sophomore course in differen-
tial equations that would combine analytical (algebraic) methods of solution
with graphical and numerical methods in a unified way. Some texts made com-
puter graphics the center of the course and left out such topics as variation of
parameters and infinite series. Other texts retained the traditional topics, but the
graphics seemed to be grafted on as an afterthought. This book is an outgrowth
of this failed search. The book retains almost all the traditional canon of differen-
tial equations, but it employs graphical and numerical methods from the outset,
both as methods of solution and as means of illuminating concepts.

To employ graphical and numerical methods from the start, it was neces-
sary to make first-order systems and reduction to first-order systems the focal
point. First-order systems form the core subject matter of Chapters 1 through 5
and Chapter 7. Chapter 6 covers power series solutions, but even here first-order
systems make a brief appearance in order to make clear why points at which
the leading coefficient of a linear differential equation vanishes must be con-
sidered singular. Through first-order systems, solutions can easily be presented
graphically with today’s computer resources. This opens the way for visual in-
terpretation of solutions and fields. First-order systems also provide the unified
means of applying numerical methods to a very wide range of differential equa-
tions. Because of this, differential equations can be investigated that could not
be considered in times gone by. Models of competing species, the pendulum,
and the tunnel diode oscillator are taken up early in the text.

In spite of the emphasis on first-order systems, I have not neglected the ba-
sics of analytic solutions. Separable, linear, and exact equations are solved in
the study of a single first-order equation in Chapter 2, and higher-order constant
coefficient linear equations are treated in Chapter 4. However, the knowledge
of first-order systems developed in Chapter 3 is used to establish the strategy
for solving higher-order linear equations. Power series methods are also not ne-
glected. Indeed, they cannot be, since they are needed in the solution of partial
differential equations, which is the subject of Chapter 9.

Chapter 9 presents the solution of partial differential equations through the
method of separation of variables and Fourier series. Chapter 10 introduces the
reader to numerical methods of solution for partial differential equations. These
two chapters were more difficult to write than the others because there is no
unifying theme, such as first-order systems for ordinary differential equations.
Nonetheless, graphics and numerical methods have been employed to help clar-
ify ideas and to extend the range of equations solved. Computer algebra systems
(CAS) such as Mathematica, Maple or MatLab (the Three M’s) are used to ad-
vantage to illustrate convergence of Fourier series, graph modes of vibration for
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drumheads, and animate solutions. The chapter on numerical methods for partial
differential equations is, I think, new in a book of this type. However, I believe it
is entirely in keeping with the theme of this book and the availability of powerful
computing resources. The use of a CAS makes the instability of some of the
finite difference methods easy to explore, and it makes possible the exploration
of some nonlinear partial differential equations.

Chapter 8 is a traditional treatment of the Laplace transform. The Laplace
transform does not call for graphical or numerical methods, but I thought it
important to include the Laplace transform because it is such an elegant way
of dealing with constant coefficient linear equations and discontinuous forcing
functions.

A large proportion of the exercises call for the use of a computer. The nec-
essary software is available at the Prentice Hall web site:

www.prenhall.com/banks

A Note to Instructors

For ordinary differential equations I have written a series of applications specific
to the task at hand for the Windows and MacOs operating systems. These require
no other support than the operating system. Packages for the entire book are also
available at the web site for each of the Three M’s. These routines are also listed
completely in the instructors manual. If, however, you wish to have your students
develop their own packages in one of the Three M’s, Appendix D provides a
guide to the development of these packages. This does have pedagogical value
if you have the time. If you intend to cover the material on partial differential
equations, then developing facility with one of the Three M’s will be helpful.

The formal abstractions of vector spaces and linear transformations are in-
troduced only in Section 9.4. Admittedly, this is quite late in the text, but it is
not until this point that the references to linear combinations and linearity prop-
erties have sufficiently motivated the abstractions of a vector space and linear
transformation. Together, Appendix A and Section 9.4 provide an introduction
to the basic elements of linear algebra. They are self-contained, and Appendix
A has exercises also. Thus Appendix A and Section 9.4 can be used at any time
as supplementary lectures. If you feel the need to introduce concepts from linear
algebra earlier, there is nothing to prevent you doing so. Indeed, if your students
lack a good college algebra preparation, I recommend covering the material on
solutions of systems of linear equations in Appendix A before going into Chap-
ter 4.

The Supplementary Exercise sections at the end of chapters contain exer-
cises that are of a more challenging nature or develop a topic that was not cov-
ered in the chapter. These exercises could be used as projects to be completed
in, say, a ten-day period.

I confess to repeatedly abusing notation by referring to f(x) as a function
as well as the value of the function. I do this deliberately because I believe
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that using the precise notation for functions would tend to confuse students who
are not yet mathematically very sophisticated. Besides, the precise notation can
become quite cumbersome at times. Students will find “consider the function
f(x) = 3x..” much more palatable than “consider the function f : R — R
defined by f(x) = 3x....”

It is intended that the book be covered in two semesters. The first semester
should aim to cover Chapters 1 through 7 and the second Chapters 8 through 10.
In one quarter, I have been able to cover Chapters 1 through 4 and Sections 6.1
and 6.2 with the omission of a few nonessential sections. There is no question
that the material on partial differential equations is inherently more difficult than
the rest of the text. However, this material is accessible if it is covered at a gentle
pace. Sections that may be omitted without loss of continuity are 2.5, 3.5, 3.6,
and all of Chapters 7, 8, and 10.

Finally, detailed suggestions for teaching sections of the text may be found
in the instructors manual for the text. Also included are suggestions for labo-
ratory activities, sample exam questions, and complete listings of the software
packages.
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CHAPTER

INTRODUCTION

ifferential equations arise in a wide range of practical problems. Whether
Dyou want to send an exploration mission to Mars or model the dynamics of
populations of fish, differential equations will emerge as an essential part of the
study of these tasks. The aim of this book is to provide you with an introduction
to differential equations and the main ways in which differential equations can
be studied. This book will describe what differential equations are, how they
arise from practical problems, and the tools available for solving them.

This chapter introduces you to the general terms and concepts that are fun-
damental to the study of differential equations. Examples are given of practical
problems that lead to differential equations. This will give you an introduction
to the usefulness of the subject. Finally, the chapter closes with the description
of a technique that reduces a wide range of differential equations to what can
be considered a standard form. It is through this standard form that computing
resources may be applied and important general results derived.

1.1 WHAT IS A DIFFERENTIAL EQUATION?

A differential equation may be described as an equation in which there are sym-
bols for some of the derivatives of an unknown function. The order of such a
differential equation is the order of the highest derivative in the equation. Differ-
ential equations come in two types, ordinary and partial. In an ordinary differ-
ential equation the unknown function is of one variable only, and the derivatives
are ordinary. On the other hand, in a partial differential equation the unknown
function is of several variables, and the derivatives are partial derivatives.

This book gives a brief introduction to the vast subject of partial differen-
tial equations, but the main focus is on equations of ordinary type. We shall
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delay discussing partial differential equations until the necessary groundwork in
ordinary differential equations has been laid.

A solution to an ordinary differential equation is a function ¢ (x) defined on
an interval (a, b) such that, if the appropriate derivatives of ¢ (x) are substituted
for the corresponding symbols for those derivatives in the equation, the equation
becomes an identity for all x € (a, b).

We shall soon drop the adjective “ordinary” unless it is needed. So, unless
otherwise stated, all differential equations may be assumed to be ordinary.

Here is an example of the ideas of a differential equation and a solution.

Example 1.1.1  The following is a second-order ordinary differential equa-
tion.
1
¥ —y=x

One solution (there are others) is
P(x) = —x + 2€~.
Indeed, ¢'(x) = —1 + 2¢*, and ¢” (x) = 2¢*. Therefore,
d"(x) — p(x) = 2¢* — (—x + 2€%) = x.

This is an identity for all x. In this case the interval of x for which the equation
holds is (—o00, 00). [ |

The square M will indicate the close of examples, definitions, and proofs.
Here is another example.

Example 1.1.2  The function ¢ (x) = —1/(x — 1) is a solution to the equa-
tion

Y =y
To verify this take the derivative and make the substitutions in the equation. This
is the result.

do=— = (L) < ooy
x _(x—1)2—<x—1) = (@)%

This is an identity for x > 1 or for x < 1. If we insist that the solution pass
through (0, 1), then we choose the solution defined for x < 1. The point (0, 1)
is called an initial condition, and we will have much more to say about this later.

|
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1.2 APPLICATIONS OF DIFFERENTIAL EQUATIONS

=

FIGURE 1.1
¢
R
L
FIGURE 1.2

Differential equations can be applied in many diverse areas. A very small sample
of the kinds of applications that are possible is given next. At appropriate points
in the text, applications will be made and evaluated in detail.

Science in general and physics in particular provide rich sources of differen-
tial equations. The reason for this, in physics at least, is that the laws of nature
are most often expressed in terms of rates of change. For example Newton’s
second law relates the rate of change of momentum to force in the equation

dmv
dr
If the mass is a constant, we have the more familiar equation

ma = F,

where a is the acceleration. You will recall that the acceleration is the second
derivative of the position as a function of time. A specific example is given by a
mass m suspended from a spring (Figure 1.1).

Imagine that the mass is allowed to extend the spring until the force of grav-
ity is balanced out by the spring. If the displacement of the mass is measured
from this position, the force of gravity can be ignored. Let x(¢) be the displace-
ment of the mass from the rest position, and assume that the spring produces a
force that is proportional to the extension of the spring. Suppose that the formula
is F(x) = —kx; then the second law gives us

mx"(t) = —kx(t)

or
mx"(t) + kx(t) = 0.

If we assume, in addition, there is a force of friction proportional to the velocity
of the mass, then the equation of the motion is

mx"(t) = —cx'(t) — kx(t)

or
mx”(t) +cx'(t) + kx(¢) = 0,

where ¢ > 0 is the constant of proportionality. We assume this constant is
positive because the force of friction is oppositely directed to the direction of
motion.

The next example is from electronics. The circuit shown in Figure 1.2 has
an inductor, resistor, capacitor, and generator that produces an electromotive
force E(t), which is a function of time. Kirchhoff’s second law of electricity
states that the sum of the voltage drops around the circuit must add up to the
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FIGURE 1.3

electromotive force. If g (¢) is the charge on the capacitor at time ¢, then the volt-
age drop across the capacitor is ¢(z)/C. Here the units for C are faradays and
the units for ¢ (z) are coulombs. The current is the rate at which charge passes a
point in the wire. Thus ¢’ (¢) is the current, and the units are amperes (coulombs
per second). Resistance is measured in ohms, so if R is the resistance, then the
voltage drop across the resistor is Rq’(¢). Finally, the voltage drop across the
inductor is proportional to the rate of change of the current. This proportionality
constant is the inductance, L, and it is measured in henrys. Thus the voltage drop
across the inductor is Lg"(t). Therefore, adding the voltage drops we get

Lq"(t) + Rq'(t) + q(1)/C = E(1).

Here is yet another example from physics, this one from statics. If a cable
hangs from two pins, it assumes a sort of parabolic shape. However, it is not a
parabola. What is this shape? Consider Figure 1.3. The figure shows a hanging
cable with part of the cable removed and a balance of forces diagram. The cable
is hung from two pins at (—1, 10) and (1, 10). At x the remaining cable to (1, 10)
has been removed and replaced with the tension force 7 that the removed cable
exerted on the cable to the left of x. Since the cable is flexible, this tension force
is tangent to the curve at x, and the force has been resolved into the horizontal
and vertical components of magnitudes H and V, respectively. The cable is still
in static equilibrium.

Since the cable is in static equilibrium, the tension forces in the cable are
constant with respect to time. Consider the piece of cable from the bottom of
the curve to the point x. The tension force Ty at x = 0 pulls on the piece of
cable from O to x horizontally and to the left. Thus there is no vertical force
at 0. Therefore, the vertical force, V, must equal the weight of this section of the
cable in order for it to remain motionless. Thus

X
s f o1+ o2 dr,
0

where p is the weight density of the cable per unit of length, and y(¢) is the
function whose graph is the hanging cable.

Remember that the tension force 7y on the left of the cable segment is hori-
zontal; so to maintain the equilibrium of the segment, H = Ty. Thus H does not
depend on x. Let k be the reciprocal of the constant H.

The differential equation that y must satisfy is found as follows. Note that,
from the force triangle, y'(x) = V/H. Therefore,

V X
'*)=—==kV =k 1 2 dt.
y'(x) . /0,0\/ + ()
Differentiating gives
Y () = kpy/1+ (' (x))2.
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The solution of this differential equation is the curve in which the cable hangs.
Solving this equation is required in Supplementary Exercise 5 of Chapter 2.

In biology, a population of bacteria may reasonably be assumed to grow at a
rate proportional to the population, provided the population has sufficient space
and nutrients and no factors such as antibiotics are introduced. If P(t¢) is the
number of bacteria in the population at time ¢, then the differential equation is

P'(t) = rP(1).

Figure 1.4 shows a portion of a ski area and the corresponding contour map.
Running across the middle of the region is a ridge, and just to the “northeast”
of that there is a long valley. Recall that contours, or level curves, are curves of
constant height on the terrain. Suppose that you wish to ski from the ridge into
the valley by the fastest route. What path should you take? You should take the
path that is always pointing downhill in the steepest direction, and this means
that the path must cut the contours at right angles.

Suppose that the altitude of the mountain over the point (x, y) is given by
z = f(x,y). Then a contour is a curve satisfying

flx,y)=c.
You will recall that the gradient vector, defined by

of . of -

ax Tay)
is at right angles to the contour and is the direction of most rapid increase in
height. Therefore, to ski down the mountain most rapidly, the skier must always
be heading in the direction opposite to the gradient. Suppose also that the path
down the mountain has been parameterized by the functions x = x(z), y = y(¢),
and z = z(t). Then

z(t) = f(x(@), y(@)),

and so itis x = x(¢) and y = y(¢) that we need to find. Skiing in a direction
opposite to the gradient means that the horizontal velocity

() =x"(T+y'(0)]

must be in the direction

at (x(z), y(t)). If we assume the parameterization is such that the velocity is
actually equal to the negative of the gradient, this will be enough to describe the
path down the mountain, although it will not necessarily give the correct speed
for the skier. After all, the same path down the mountain can be skied making a
snow plow all the way or skiing as fast as possible.



