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Preface

We became involved with numerical relativity under very different circum-
stances. For one of us (C.B.) it dates back to about 1987, when the current
Laser-Interferometer Gravitational Wave Observatories were just promising
proposals. It was during a visit to Paris, at the Institut Henri Poincaré, where
some colleagues were pushing the VIRGO proposal with such a contagious
enthusiasm that I actually decided to reorient my career. The goal was to be
ready, armed with a reliable numerical code, when the first detection data
would arrive.

Allowing for my experience with the 341 formalism at that time, I started
working on singularity-avoidant gauge conditions. Soon, I became interested
in hyperbolic evolution formalisms. When trying to get some practical appli-
cations, I turned to numerical algorithms (a really big step for a theoretically
oriented guy) and black hole initial data. More recently, I became interested
in boundary conditions and, closing the circle, again in gauge conditions. The
problem is that a reliable code needs all these ingredients to be working fine
at the same time. It is like an orchestra, where strings, woodwinds, brass and
percussion must play together in a harmonic way: a violin virtuoso, no matter
how good, cannot play Vivaldi’s Four Seasons by himself.

During that time, I have had many Ph.D. students. The most recent one
is the other of us (C.P.). All of them started with some specific topic, but
they needed a basic knowledge of all the remaining ones: you cannot work on
the saxophone part unless you know what the bass is supposed to play at the
same time.

This is where this book can be of a great help. Imagine a beginning gradu-
ate student armed only with a home PC. Imagine that the objective is to build
a working numerical code for simple black-hole applications. This book should
first provide him or her with a basic insight into the most relevant aspects
of numerical relativity. But this is not enough; the book should also provide
reliable and compatible choices for every component: evolution system, gauge,
initial and boundary conditions, even for numerical algorithms.



VIII Preface

This pragmatic orientation may cause this book to be seen as biased. But
the idea was not to produce a compendium of the excellent work that has
been made in numerical relativity during these years. The idea is rather to
present a well-founded and convenient way for a beginner to get into the field.
He or she will quickly discover everything else.

The structure of the book reflects the peculiarities of numerical relativity
research:

e It is strongly rooted in theory. Einstein’s relativity is a general-covariant
theory. This means that we are building at the same time the solution and
the coordinate system, a unique fact among physical theories. This point is
stressed in the first chapter, which could be omitted by more experienced
readers.

e It turns the theory upside down. General covariance implies that no specific
coordinate is more special than the others, at least not a priori. But this
is at odds with the way humans and computers usually model things: as
functions (of space) that evolve in time. The second chapter is devoted to
the evolution (or 3+1) formalism, which reconciles general relativity with
our everyday perception of reality, in which time plays such a distinct role.

e It is a fertile domain, even from the theoretical point of view. The structure
of Einstein’s equations allows many ways of building well-posed evolution
formalisms. Chapter 3 is devoted to those which are of first order in time
but second order in space. Chapter 4 is devoted instead to those which are
of first order both in time and in space. In both cases, suitable numerical
algorithms are provided, although the most advanced ones apply mainly to
the fully first order case.

e It is challenging. The last sections of Chaps. 5 and 6 contain front-
edge developments on constraint-preserving boundary conditions and gauge
pathologies, respectively. These are very active research topics, where new
developments will soon improve on the ones presented here. The prudent
reader is encouraged to look for updates of these front-edge areas in the
current scientific literature.

A final word. Numerical relativity is not a matter of brute force. Just a
PC, not a supercomputer, is required to perform the tests and applications
proposed here. Numerical relativity is instead a matter of insight. Let wisdom
be with you.

Palma de Mallorca, Carles Bona
April 2005 Carlos Palenzuela Luque
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1

The Four-Dimensional Spacetime

1.1 Spacetime Geometry

Physics theories are made by building mathematical models that correspond
to physical systems. General Relativity, the physical theory of Gravitation,
models spacetime in a geometrical way: as a four-dimensional manifold. The
concept of manifold is just a generalization to the multidimensional case of
the usual concept of a two-dimensional surface. This will allow us to apply the
well known tools of differential geometry, the branch of mathematics which
describes surfaces, to the study of spacetime geometry.

An extra complication comes from the fact that General Relativity laws
are formulated in a completely general coordinate system (that is where the
name of ‘General’ Relativity comes from). Special Relativity, instead, makes
use of inertial reference frames, where the formulation of the physical laws is
greatly simplified. This means that one has to learn how to distinguish between
the genuine features of spacetime geometry and the misleading effects coming
from arbitrary choices of the coordinate system. This is why the curvature
tensor will play a central role, as we will see in what follows.

1.1.1 The Metric

We know from differential geometry that the most basic object in the space-
time geometrical description is the line element. In the case of surfaces, the
line element tells us the length dl corresponding to an infinitesimal displace-
ment between two points, which can be related by an infinitesimal change
of the local coordinates x* in the surface. In the case of the spacetime, the
concept of length has to be generalized in order to include also displacements
in time (which is usually taken to be the ‘zero’ coordinate, z° = ct). This
generalization is known as the ‘interval’ ds, which can be expressed in local
coordinates as

ds? = Guvdztdz” (u,v=0,1,2,3) . (1.1)

C. Bona and C. Palenzuela Luque: Elements of Numerical Relativity, Lect. Notes Phys. 673,
1-17 (2005)
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2 1 The Four-Dimensional Spacetime

We can easily see from (1.1) that the tensor g, is going to play a central
role. In the theory of surfaces, it has been usually called ‘the first fundamental
form’. In General Relativity it is more modestly called ‘the metric’ in order to
emphasize its use as a tool to measure space and time intervals. The metric
components can be displayed as a 4 by 4 matrix. This matrix is symmetric
by construction (1.1), so that only 10 of the 16 coefficients are independent.
Computing these 10 independent coeflicients in a given spacetime domain is
the goal of most Numerical Relativity calculations.

The metric tensor g, is the basic field describing spacetime. One would
need to introduce extra fields only if one wants to take into account non-
gravitational interactions, like the electromagnetic or the hydrodynamical
ones, but the gravitational interaction, as far as we know, can be fully de-
scribed by the metric.

1.1.2 General Covariance

The most interesting property of the line element (1.1) is that it is invariant
under generic (smooth) changes of the spacetime coordinates, namely

o = I C (1.2)

This is because the values of space or time intervals are independent of the
coordinate system one is using for labelling spacetime points. This means
that the components of the metric must change in a suitable way in order to
compensate the changes of the differential coefficients dz* in (1.1),

ox* Ox¥

uv = !JWWW . (1.3)

We will say then that the metric transforms in a covariant way or, more
briefly, that it behaves as a covariant tensor field under the general coordinate
transformations (1.2).

The general covariance (1.3) of the metric means that, without altering
the properties of spacetime, one can choose specific coordinate systems that
enforce some interesting conditions on the metric coefficients. One can choose
for instance any given (regular) spacetime point P and devise a coordinate
system such that

gﬂ/u/ |P = diag{—CQ, +17 +1, +1} 8;7/ g/L’l/ |P = 0 (14)

(local inertial coordinate system at P). This means that Special Relativity
holds true locally (in the strongest sense: a single point at a time), and it will
also be of great help in shortening some proofs by removing the complication
of having to deal with arbitrary coordinate systems.

At this point, we must notice some ambiguity which affects to the very
meaning of the term ‘solution’. In the geometrical approach, one solution
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corresponds to one spacetime, so that metric coefficients that can be related by
the covariant transformation (1.3) are supposed to describe the same metric,
considered as an intrinsic tensor, independent of the coordinate system. In this
sense, we can see how in exact solutions books (see for instance [1]) different
forms of the same metric appear, as discovered by different authors. In the
differential equations approach, however, the term solution applies to every set
of metric components that actually verifies the field equations, even if there
could be some symmetry (coordinate or ‘gauge’) transformation relating one
of these ‘solutions’ to another.

This is by no way a mere philosophical distinction. If General Relativity
has to be (as it is) general covariant, then the field equations must have two
related properties:

e The equations must be unable to fully determine all the metric coefficients.
Otherwise there would be no place for the four degrees of freedom corre-
sponding to the general covariant coordinate (gauge) transformations (1.3).

e The equations must not prescribe any way of choosing the four spacetime
coordinates. Otherwise there will be preferred coordinate systems and gen-
eral covariance would be broken.

But in Numerical Relativity there is no way of getting a solution without com-
puting the values of every metric component. This means that the differential
system obtained from just the field equations is not complete, and one must
prescribe suitable coordinate conditions before any numerical calculation can
be made. The mathematical properties of the resulting complete system will
of course depend of this choice of the coordinate gauge. We will come back to
this point later.

1.1.3 Covariant Derivatives

The very concept of derivative intrinsically involves the comparison of field
values at neighboring points. The prize one has to pay for using arbitrary
coordinate systems is that one can no longer compare just field components
at different points: one must also compensate for the changes of the coordinate
basis when going from one point to another. In this way we can interpret the
two contributions that arise when computing the covariant derivative of a
vector field:

Vvl =007 + 17 0P . (1.5)

The first term corresponds to the ordinary partial derivatives of the field
components, whereas the second one takes into account the variation of the
coordinate basis used for computing these components. The I" symbols in (1.5)
are known as ‘connection coeflicients’ because they actually allow to compare
fields at neighboring points.
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The covariant derivative of tensors with ‘downstairs’ indices contains con-
nection terms with the opposite sign (’downstairs’ components correspond to
the dual basis). In the case of the metric, for instance, one has

V,,g,w = O0pGuv — [";Hgm/ - F(;yg;m' (16)

(notice that every additional index needs its own connection term).

The connection coefficients I'?,, are not tensor fields. They transform un-
der a general coordinate transformation (1.2) in the following way:
r dx”’ Ox* Oz 0%z

FP/ [ FP 7 7 7 7 . ].7
W' = oge |1 oz 8g7 T 9an oav (1.7)

The additional second derivatives terms appearing in (1.7) compensate exactly
the analogous terms arising in the transformation of the partial derivative
contributions in (1.5, 1.6), so that the covariant derivative of a tensor field is
again a tensor field. Notice, however, that the extra second derivatives terms
in (1.7) are symmetric in the lower indices. This means that the antisymmetric
combinations

Vi

1
Iy =5 (M —T%,) (1.8)

correspond to the components of a tensor field (torsion tensor), because the
antisymmetric part of the second derivatives terms in (1.7) actually vanishes.

Coming back to the metric tensor, the fact that the transformation of its
first partial derivatives includes both first and second derivatives terms is the
reason why one can define at any fixed point P the locally inertial coordinate
system in such a way that both conditions in (1.4) hold true. It is natural to
assume that the connection coefficients should also vanish in the local inertial
system at P, in order to make sure that Special Relativity is fully recovered

locally. These conditions imply that, in the local inertial coordinate system at
P:

o The torsion (1.8) vanishes
I

[uv

=0 (1.9)

e The metric is preserved by covariant differentiation
Vogu =0. (1.10)

Notice that both (1.9) and (1.10) are tensor equations. And the vanishing of
any tensor quantity in a local inertial system implies that it must actually
vanish in any other coordinate system. This fact, allowing for (1.6), provides
a very useful expression for the connection coefficients in terms of the first
derivatives of the metric components:

1 o
FTLV = 5 g p[augpu + 6Vgup - 8pg,uu] (111)
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(Christoffel symbols), where we have noted with ‘upstairs’ indices the compo-
nents of the inverse matrix of the metric, namely

G G = 05, 5 (1.12)

1.1.4 Curvature

Up to this point, all we have said could perfectly apply to the Special Relativ-
ity (Minkowski) spacetime. All the complications with covariant derivatives
and connection coefficients could arise just from using non-inertial coordinate
systems. Minkowski spacetime is said to be flat because a further specializa-
tion of the local inertial coordinate system can make the metric form (1.4) to
apply for all spacetime points P simultaneously.

In General Relativity, in contrast, gravity is seen as the effect of spacetime
curvature. So one must distinguish between the intrinsic effects of curvature
(gravitation) and the sort of ‘inertia forces’ arising from weird choices of co-
ordinate systems. Here again, this is a very well known problem from surface
theory. The curvature of a surface can be represented by its curvature tensor
(Riemann tensor, as it is known in General Relativity), which can be defined
as follows:

(V,Ve —V,V,)v" = RE, 0", (1.13)

so that it can be interpreted as a measure of the non-commutativity of (co-
variant) derivatives: a property that characterizes true curved spacetimes. The
Riemann tensor RY, ,, defined by (1.13) can be explicitly computed, allowing
for (1.5), in terms of the connection coefficients:

T A A
R, =0, — 0,1, + F‘;/\FW ot k=% 7 (1.14)
It is clear from (1.14) that in a flat spacetime, where there exists a co-
ordinate system in which all connection coefficients vanish everywhere, the
curvature tensor is zero, namely
RY,, =0 (1.15)
and, like any other tensor equation, it holds in any other coordinate system.
Conversely, if the tensor condition (1.15) does not hold, then (1.14) tells us
that there can not be any coordinate system in which all connection coeffi-
cients vanish everywhere and the manifold considered is not flat. It follows
that (1.15) is a necessary and sufficient condition for a given spacetime to
be flat. So finally we have one intrinsic and straightforward way to distin-
guish between genuine curved spaces and flat spaces ‘disguised’ in arbitrary
coordinate systems.
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1.1.5 Symmetries of the Curvature Tensor

Riemann curvature tensor is a four-index object. In four-dimensional space-
time, this could lead up to 4* = 256 components. Of course there are algebraic
symmetries that contribute to reduce the number of its independent compo-
nents. Part of these symmetries can be directly obtained from the generic
definition (1.14), which holds for arbitrary connection coefficients. The re-
maining ones come from taking into account the relationship (1.11) between
the connection coefficients and the metric tensor. We have summarized them
in Table 1.1.

Table 1.1. Algebraic symmetries of the Curvature tensor

Generic Case Symmetries Metric Connection (1.11)

H — M —_—
R vpo — —-R vop R,uup(r — _Ruupn

le}pa + R‘L;)o'l/ + Rlixup =0 R,ut/pa = Rpa;w

But, even taking all these symmetries into account, one has still 20 alge-
braically independent components to deal with. One can easily realize, how-
ever, that lower rank tensors can be obtained by index contraction from the
Riemann tensor. Allowing for the algebraic symmetries, there is only one in-
dependent way of contracting a pair of indices of the curvature tensor, namely

R, =R, , _ (1.16)
which is known as ‘Ricci tensor’ in General Relativity. It follows from the
algebraic properties of the Riemann tensor that (1.16) is symmetric in its two
indices, so it has only 10 independent components. Contracting again in the
same way, one can get the Ricci scalar

— DA olod
R=R\ =R, . (1.17)

The Ricci tensor (1.16) and the Ricci scalar (1.17) play a major role when
trying to relate curvature with the energy content of spacetime. In three-
dimensional manifolds, the Ricci tensor allows to obtain algebraically all the
components of the curvature tensor (both of them have only six indepen-
dent components). In the four-dimensional case this is no longer possible: the
importance of the Ricci tensor comes instead from the Bianchi identities,

VAR/;/pJ + V,;RLL”)\ + VURMU/\/) =0 ) (118)

which can be obtained directly from (1.14). One can contract two pairs of
indices in (1.18) in order to get the following ‘contracted Bianchi identity’ for
the Ricci tensor




