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Pretface

Hybrid dynamical systems have attracted considerable attention in recent
years. In general, hybrid dynamical systems are those that combine con-
tinuous and discrete dynamics and involve both continuous and discrete
state variables. From an engineering viewpoint, a hybrid system is a net-
work of digital and analog devices or a digital device that interacts with
a continuous environment. The emerging area of hybrid dynamical sys-
tems lies at the crossroads of control theory and computer science: control
theory contributes to the analog aspects of hybrid systems, and computer
science contributes to the digital aspects. Driven by rapid advances in dig-
ital controller modern technology, hybrid dynamical systems are objects of
increasing relevance and importance. However, at the present there is no
systematic qualitative theory of hybrid dynamical systems. This book is
concerned with development of such a theory. Although numerous journal
and conference papers have appeared on the topic of hybrid systems, this
book is one of the first monographs on this field.

This book is primarily a research monograph that presents in a unified
fashion, some recent research on hybrid dynamical systems. The book is in-
tended for both researchers and advanced postgraduate students in control
engineering, theoretical computer science, and applied mathematics with an
interest in the field of hybrid dynamical systems. The book consists mainly
of the authors’ original results and is essentially self-contained. Many of
these results have not been published previously. The material presented
in the monograph derives from a period of research collaboration between
the authors from 1997 to 1999.

The authors are very grateful to Rob Evans who attracted the second
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author’s attention to the area of hybrid systems and always strongly en-
couraged the research presented in the monograph. His advice, knowledge,
and deep insight have been invaluable. This book would not have been pos-
sible without Rob’s support. Our special thanks also go to our colleagues
Ian Petersen, Andrey Barabanov, and Matthew James who have provided
useful comments and suggestions. The stimulating research environment
at the Department of Electrical and Electronic Engineering, The Univer-
sity of Western Australia, with its amazing academic culture has been an
ideal setting for the development of the book. Also, the authors wish to
acknowledge the support they have received from the Australian Research
Council. Finally, the first author is grateful for the enormous support he
has received from his wife Elena and daughter Julia.

St. Petersburg, Russia Alexey Matveev
Perth, Australia Andrey Savkin
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1

Introduction

1.1 Hybrid Dynamical Systems

The hybrid dynamical systems (HDS) of interest in this book are those that
involve the interaction of discrete and continuous dynamics. These systems
typically contain variables that take values from a continuous set (usually,
the set of real numbers) and also variables that take values from a discrete
set (e.g., the set of symbols {q1,q2,... ,qn}).

There are many examples of hybrid dynamical systems. One well-known
instance of a hybrid system is a dynamical system described by a set of or-
dinary differential equations with discontinuous or multivalued right-hand
sides. Such mathematical models can be used to describe various engineer-
ing systems with relays, switches, and hysteresis. Properties of these hybrid
systems have been studied in great detail for the past fifty years, especially
in the Soviet literature (see e.g. [4,23,24,40,80]). Another existing area
that has recently been brought under the hybrid systems framework is the
study of sliding mode control [83].

In the linear control area, a typical example of a hybrid system is that
which is created when a continuous-time plant described by differential
equations is controlled by a digital regulator described by difference equa-
tions. These types of systems are studied in modern control engineering
courses under the name of computer-controlled systems or sampled-data
systems [7,21,37]. This is an extremely important area, because a conse-
quence of the revolutionary advances in microelectronics is that practically
all control systems implemented today are based on microprocessors and so-
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phisticated microcontrollers. If we consider quantization of the continuous-
valued variables, then the hybrid systems contain not only continuous-
valued signals, but the discrete-valued variables as well.

A typical hybrid system is a logical discrete-event decision-making con-
troller interacting with a continuous-time process. This model can be used
to accurately describe a wide range of real-time industrial processes and
their associated supervisory control and monitoring systems. A simple ex-
ample is a home climate-control system. Due to its on-off nature, the ther-
mostat is modelled as a discrete-event system, whereas the furnace and air-
conditioner are modelled as continuous-time systems. Some other instances
of such systems include automotive power train systems, computer disk
drives, robotic systems, automotive engine management,high-level flexible
manufacturing systems, intelligent vehicle/highway systems, sea/air traffic
management, modern spacecraft control systems, job scheduling, intercon-
nected power systems, chemical processes (see e.g. [9,12,25, 32,44, 48, 60,
79,86)).

Another example of a hybrid control system is a switched controller dy-
namical system. There are several theoretically interesting and practically
significant problems concerning the use of switched controllers. In some sit-
uations it is possible to design several controllers and then switch between
them to provide a performance improvement over a fixed controller, as well
as new functionality [22,53]. In other situations the choice of linear or non-
linear controllers available to the designer is limited and the design task is
to use the available set of controllers in an optimal fashion [68-71,75-77].
The latter problem includes, for example, the optimal switching between
gears in a gear-box and the optimal switching between heating and cooling
modes of operation in an air-conditioning plant.

Recently there has been a great deal of research activity in the area of
hybrid control systems (see e.g. [5,6,8,10,13-15,17,26,27,30,33,34,39,42,46,
47,50,56,64,66,67,70,72,74,84,85,89]). This activity has been motivated in
part by the development of the theory of discrete-event dynamical systems
in the 1980s and 1990s [16,31,52,57,63]. At the same time there has been
growing interest in hybrid dynamical systems among theoretical computer
scientists and mathematical logicians [1,2, 6]. In this literature, the most
common example is a timed automaton. This is a hybrid system consisting
of a set of simple integrators (clocks) coupled with a finite state automaton.
Such systems can be used, for example, to model protocols with timing
requirements and constraints. The main issue there is the verification that
a hybrid system exhibits a desired behaviour. The verification problem is
nontrivial and in many cases may be undecidable.

This book consists of original authors’ results and is essentially self-
contained. We apologize in advance to the many authors whose contribu-
tions have not been mentioned. The coverage in this brief overview is by
no means complete. The literature in the field of hybrid systems is vast,
and we limited ourselves to references that we found most useful, or that
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contain material supplementing the text.

In conclusion, the area of hybrid systems is a new, fascinating disci-
pline bridging control engineering, theoretical computer science, and ap-
plied mathematics. In fact, many problems facing engineers and scientists,
as they seek to use computers to control complex physical systems, natu-
rally fit into the HDS framework. The study of hybrid dynamical systems
represents a difficult and exciting challenge in control engineering. This field
is referred to as “The Control Theory of Tomorrow” by SIAM News [28].
There is now an emerging literature on this topic describing a number of
mathematical models, heuristic algorithms and stability criteria. However,
at present there is no systematic qualitative theory of hybrid systems. This
book is concerned with development of such a theory.

1.2 Two Contrasting Examples of Discretely
Controlled Continuous Variable Systems

The research presented in this book has been motivated in part by two very
interesting examples of the discrete control of a continuous variable system
introduced in the paper [17] by Chase, Serrano, and Ramadge. These ex-
amples exhibit what may be regarded as two extremes of complexity of the
behaviour of hybrid dynamical systems: one is eventually periodic, and the
other is chaotic. They are of interest in their own right but have also been
used to model certain aspects of flexible manufacturing systems [51, 60].
In this section, we describe these two examples following [17].

Example 1.2.1: A switched server system

Consider a system consisting of three buffers and one server. We refer to
the contents of buffers as “work”; it will be convenient to think of work
as a fluid, and a buffer as a tank. However, in manufacturing applications,
work can represent a continuous approximation to the discrete flow of parts
in a flexible manufacturing system [60]. Work arrives to the buffer j at a
constant rate p; > 0. The server removes work from a selected buffer at
the unit rate. We assume that the system is closed, so that

p1+p2+ps=1 (1.2.1)

The location of the server is a discrete control variable, and may be selected
using a feedback policy.

The switched server system with three buffers and the server in the
location 2 are shown in Fig.1.2.1.

This example can also be thought of as a simple instance of the switched
controller problem (see e.g. [70,75]).

The location of the server is selected based on quantized observation of
the state, and the movement of the server is triggered by a “discrete event.”
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lpl

FIGURE 1.2.1. The switched server system with three buffers.

Now we show that this system can be described by a set logic-differential
equations. Indeed, let @ := {q1,g2,93} where q1,qo,,qs are symbols. The
discrete state g; where j = 1,2, 3 corresponds to the case when the server
is removing work from the buffer j, and the discrete state variable ¢(t) € Q
describes the state of the server at time t. Let x;(t) be the amount of work
in the buffer j at time ¢, and let

X1 (t)
z(t) = | z2(¢)
Zxs3 (t)

The state of the system at time ¢ can be described by the pair [z(¢), ¢(¢)].
Furthermore, introduce the following vectors:

p1—1 1 p1
a(q1) == | p2 ,ooa(g)=| p2—1 ], al(g):=1| p2
D3 p3 p3—1

Then the above switched server system can be described by the following
logic-differential equation:

if ¢(t) =g¢; then z(t) = a(g;)- (1.2.2)

In [17] a certain parametric class of server switching policies was considered.
This class includes, in particular, the following quite natural policy.

SP1.2.1 The server switches as soon as the current buffer is emptied at
time ¢ and to the buffer j with the largest scaled content ¢;(t) := cj_lzj (t).
(The coefficients ¢; > 0,cz > 0 and c3 > 0 are given.)

SP1.2.2 Likewise, the server starts with the buffer that has the largest
scaled content at ¢t = 0.

This control policy does not specify what to do if the largest content is
attained at two buffers. In this event, the server can be switched to the
buffer with the least index j.
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Note that the control policy SP1.2.1, SP1.2.2 is a generalization of the
Clear-the-Largest- Buffer-Level Policy studied in [60].
Let v > 0 be a given constant. Introduce the set

Z1
>0, x29>0, z3>
K, := T2 eR¥p Tr=" JASh 520
s 1+ 22+ T3 =7

Then it immediately follows from (1.2.1) that the set K, is invariant: if
z(0) € K, for a solution [z(t), ()], then z(t) € K, for all ¢ > 0.

It was shown in [17], that for almost all values of the parameters ci, cg, c3,
the closed-loop system (1.2.2) with the switching policy SP1.2.1, SP1.2.2
is eventually periodic in the following sense: For any v > 0, there exists a
finite number (no more than six) limit cycles lying in K.,, and any trajectory
from K. converges to one of them. As usual, “almost all” means “all but
a set with zero Lebesgue measure.”

Example 1.2.2: A switched arrival system

Like the switched server system, the second system to be considered consists
of three buffers and one server (see Fig. 1.2.2). However, work is removed
from the buffer j at a given constant rate p; > 0. To compensate, the server
delivers material to any selected buffer at the unit rate. As in the previous
example, the location of the server is a control variable that can be chosen
using a feedback policy. Again, we assume that the system is closed, i.e.,

p1+p2+p3=1

S
|

lpl le lps

FIGURE 1.2.2. The switched arrival system with three buffers.

Introduce the following vectors:

1-p1 —p1 —p1
a(q1) == | —p2 , alg):=| 1—p2 |, alg):=| —p2
—p3 —p3 L=



6 1. Introduction

Then this system can be described by the equation (1.2.2). The control
policy introduced in [17] consists in switching the server to an empty buffer
when some buffer becomes empty. The singular case when more than one
buffer is empty was ignored. It can be easily seen that the set of initial
conditions that give rise to such singular trajectories is of zero Lebesgue
measure. It was shown in [17] that the switched arrival system with this
switching policy exhibits a chaotic behaviour.

1.3 The Main Goal of This Book

The examples in Section 1.2 explain what types of hybrid systems are
studied in this book. It should be pointed out that in [17] only the case
of systems with three buffers was considered. Because the set K, is in-
variant and planar, the systems with three buffers can be reduced to two-
dimensional systems, which makes their analysis a much easier task. To
extend the results of [17] to the case of systems with an arbitrary number
of buffers is a quite nontrivial problem. Another interesting problem is to
study various server switching strategies. Furthermore, a natural general-
ization of a switched server system is a switched flow network consisting of
a number of interconnected buffers. Such networks can be used to model
flexible manufacturing assembly/disassembly systems [60]. They can also
be interpreted as models for various computer and communication systems,
especially those with time-sharing schemes. The main goal of this research
monograph can be stated as follows: To develop a general qualitative theory
of hybrid dynamical systems that will provide effective tools to analyze and
describe the dynamics of various complex multidimensional generalizations
of Examples 1.2.1 and 1.2.2.

As a general mathematical model for flow networks, we employ the con-
cept of a differential automaton introduced by Tavernini [78]. We should
point out that a very similar mathematical model was considered by Wit-
senhausen in 1966 [87]. Roughly speaking, a differential automaton operates
as follows. While the discrete state remains constant, the continuous one
obeys a definite dynamical law. Transition to another discrete state implies
a change of this law. In its turn, the discrete state evolves as soon as a
certain event occurs, with both the evolution and the event depending on
the continuous state.

Examples 1.2.1 and 1.2.2 show that some of differential automata exhibit
chaotic behaviour whereas, under certain assumptions, the dynamics of
other automata is eventually periodic. It is quite typical for differential
automata to have no equilibrium points. Therefore, the simplest attractor
in such systems is a limit cycle. The main results of this book describe
some broad and important classes of hybrid dynamical systems such that
any system from these classes satisfies the following properties:
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(i) There exist a finite number of limit cycles.

(ii) Any trajectory of the system converges to one of these limit cycles.

Hence any trajectory of the system is asymptotically periodic and the sys-
tem always exhibits a regular stable predictable behavior. This conclusion
is very important for applications. We believe that the systems satisfying
the properties (i) and (ii) play the same role in the field of hybrid systems as
the globally stable systems do in the conventional continuous-time control
theory.

Obtaining criteria for existence of self-excited oscillations or limit cycles
is a very old and challenging problem of the classic qualitative theory of
differential equations originated in the work of Poincaré and Lyapunov. Few
constructive results are known for nonlinear systems of order higher than
two, and it is even harder to study stability of limit cycles (see e.g. [3,45]).
Our results show that constructive criteria for existence and global stability
of limit cycles can be proved for quite general classes of hybrid dynamical
systems. This appears to be surprising and gives us a hope that it is possible
to develop a qualitative theory of some classes of hybrid dynamical systems
that will be even more constructive than the classic qualitative theory of
differential equations. We view this book as the first major step towards
the development of such a theory.

Furthermore, we study switched flow networks with time-varying arrival
rates and transportation delays. Such models are much more realistic, es-
pecially in the case of computer or communication networks. For these
networks, we propose a decentralized control policy implementable in real
time that guarantees a regular behavior of the closed-loop system.

1.4 Organization of the Book

The body of the book is organized as follows.
Chapter 2

In this chapter, we present a number of relatively simple examples to ex-
plain the intuitive ideas underlying the topics of this book. For this purpose,
we introduce a special class of hybrid dynamical systems. We call these hy-
brid systems cyclic linear differential automata (CLDA). We show that any
CLDA can be reduced to a linear discrete-time system with periodic coef-
ficients. Hence, qualitative analysis of such a hybrid system is a relatively
easy task. We call a CLDA globally periodic if it has a limit cycle that at-
tracts all other trajectories. A necessary and sufficient condition for global
periodicity of a CLDA is given. Furthermore, we consider several switched
server systems and prove existence and stability of limit cycles. Finally, we
prove that the switched arrival system with an arbitrary number of buffers



